A method of increment signs forecasting of time series

Authors

  • Олександр Юрійович Берзлев Uzhgorod National University Universitets’ka, 14. Uzhgorod, Zakarpattia, Ukraine, 88000, Ukraine

DOI:

https://doi.org/10.15587/1729-4061.2013.12362

Keywords:

Time series, forecasting, sign of growth, clustering, nearest neighbor method, combined forecasting model, unstable average

Abstract

As of today, there is no universal method to solve the problem of short-term forecasting of signs of time series increase that would fully meet objectives of a forecaster, analyst or investor, in terms of the necessary accuracy of forecasts, regardless of the structure of time series. The article suggests the method of forecasting of signs of time series increase, based on the use of combined models of selective type in complex, which consist of indicators of unstable average, and pre-clustering time series according to the method K- of nearest neighbors. The suggested method can be used as a component of information forecasting systems, in particular those, which are used in the foreign exchange market to improve the accuracy of forecasting of signs of time series increase one point ahead

Author Biography

Олександр Юрійович Берзлев, Uzhgorod National University Universitets’ka, 14. Uzhgorod, Zakarpattia, Ukraine, 88000

PhD student

Department of Cybernetics and Applied Mathematics 

References

  1. Vercellis C. Business intelligence: data mining and optimization for decision making / C. Vercellis. – John Wiley & Sons, Ltd., Publication, 2009. – 417 p.
  2. Box G.E.P. Time series analysis: forecasting and control / G.E.P. Box, G.M. Jenkins. – San Francisco: Holden-Day, 1976. – 575 p.
  3. Brown Robert G. Statistical forecasting for inventory control [Текст] / R.G. Brown. – US: McGraw-Hill Inc., 1959. – 223 p.
  4. Holt Charles C. Forecasting trends and seasonal by exponentially weighted averages [Текст] / C. Holt // International Journal of Forecasting. – 1957. – Vol.20, no.1. – P. 5-10.
  5. Берзлев, А.Ю. Оценка эффективности прогнозирования и принятия решений на финансовом рынке [Текст] / А.Ю. Берзлев // «Problems of Computer Intellectualization», V.M. Glushkov Institute of Cybernetics of NAS of Ukraine. – Kyiv-Sofia: ITHEA, 2012. – C. 249-257.
  6. Лукашин, Ю.П. Адаптивные методы краткосрочного прогнозирования временных рядов [Текст] / Ю.П. Лукашин. – М.: Финансы и статистика, 2003.– 416 с.
  7. Singh S. Pattern Modeling in Time-Series Forecasting [Текст] / S. Singh // Cybernetics and Systems. An International Journal. – 2000. – Vol. 31, no. 1. – P. 49-65.
  8. Fernández-Rodríguez F. Nearest-Neighbour Predictions in Foreign Exchange Markets [Текст] / F. Fernández-Rodríguez, S. Sosvilla-Rivero, J. Andrada-Félix // Fundacion de Estudios de Economia Aplicada. – 2002. – no.5. – 36 p.
  9. Keogh, E. An enhanced representation of time series which allows fast and accurate classification, clustering and relevance feedback [Текст] / E. Keogh, M. Pazzani // 4th Int’l Conference on Knowledge Discovery and Data Mining. 1998 Aug 27-31. – New York. – Р. 239-241.
  10. Берзлев, О.Ю. Адаптивні комбіновані моделі прогнозування біржових показників [Текст] / О.Ю. Берзлев, М.М. Маляр, В.В. Ніколенко // Вісник Черкаського держ. технолог. ун-ту. Серія: технічні науки. – 2011. – № 1. – С. 50-54.
  11. Vercellis, C. (2009). Business intelligence: data mining and optimization for decision making. John Wiley & Sons, Ltd., Publication, 417 p.
  12. Box G.E.P., Jenkins G.M. (1976). Time series analysis: forecasting and control. San Francisco: Holden-Day, 575 p.
  13. Brown Robert G. (1959) Statistical forecasting for inventory control. US: McGraw-Hill Inc., 223 p.
  14. Holt Charles C. (1957) Forecasting trends and seasonal by exponentially weighted averages. International Journal of Forecasting. Vol.20, no.1. P.5-10.
  15. Berzlev A.Yu. (2012). Evaluation of forecasting and financial decision-making. «Problems of Computer Intellectualization», V.M. Glushkov Institute of Cybernetics of NAS of Ukraine. Kyiv-Sofia: ITHEA, 249-257 p.
  16. Lukashin Yu. P. (2003) Adaptive methods of near-term time series forecasting. Moscow: Finanse and Statistics. 416 p.
  17. Singh S. (2000) Pattern Modeling in Time-Series Forecasting. Cybernetics and Systems. An International Journal. Vol. 31, no. 1. P. 49-65.
  18. Fernández-Rodríguez F., Sosvilla-Rivero S., Andrada-Félix J. (2002). Nearest-Neighbour Predictions in Foreign Exchange Markets. Fundacion de Estudios de Economia Aplicada, no.5, 36 p.
  19. Keogh E., Pazzani M. (1998) An enhanced representation of time series which allows fast and accurate classification, clustering and relevance feedback. 4th Int’l Conference on Knowledge Discovery and Data Mining. 1998 Aug 27-31. New York. Р. 239-241.
  20. Berzlev A. Yu., Malyar M.M., Nikolenko V.V. (2011) Adaptive com-bined models of stock exchange index forecasting. Herald of Cherkasy State Technological University. nom. 1. P. 50-54.

Published

2013-04-25

How to Cite

Берзлев, О. Ю. (2013). A method of increment signs forecasting of time series. Eastern-European Journal of Enterprise Technologies, 2(4(62), 8–11. https://doi.org/10.15587/1729-4061.2013.12362

Issue

Section

Mathematics and Cybernetics - applied aspects