Two-step finite difference schemes of the method of the joint approximation for solving the quasi-linear one-dimensional hyperbolic equations

Authors

  • Валерій Леонідович Бучарський Dnipropetrovsk National University named after O.Gonchar Gagarin ave, 72, Dnipropetrovsk, 49000, Ukraine

DOI:

https://doi.org/10.15587/1729-4061.2013.12368

Keywords:

Method of the joint approximation, finite difference scheme, high order of accuracy

Abstract

In present paper the method of the joint approximation for constructing high order of accuracy finite difference schemes is extended on the case of quasi-linear hyperbolic equations and their systems. The new two-step cost-effective way for constructing compact cost-effective finite difference schemes with unlimited order of accuracy is suggested. This approach is based on the method of the joint approximation and one property of the hyperbolic partial derivatives equations. Finite difference schemes up to eleventh order of temporal and spatial accuracy for the one-dimensional Burgers equation and for system of one-dimension gas dynamic are presented. Results of the solution of the used widely test cases are presented also. The data of the calculations confirm the theoretical results

Author Biography

Валерій Леонідович Бучарський, Dnipropetrovsk National University named after O.Gonchar Gagarin ave, 72, Dnipropetrovsk, 49000

Associate professor

Department of Jet Propulsion System

References

  1. Бучарский, В.Л. Метод совместной аппроксимации построения разностных схем для решения уравнений в частных производных / В.Л. Бучарский // Техническая механика. – 2007. – № 1. – с. 50 – 57.
  2. Бучарский В.Л. Разностная схема метода совместной аппроксимации для решения квазилинейных гиперболических уравнений / В.Л. Бучарский // Проблеми обчислювальної механіки і міцності конструкцій. – Дніпропетровськ: ДНУ, 2008 . – с. 7 – 15.
  3. Бучарский В.Л., Калинчук Е.М. Симметричные разностные схемы метода совместной аппроксимации для решения линейного уравнения переноса / В.Л. Бучарский, Е.М Калинчук // Математичні машини і системи. – 2011. – №4. –с. 161-165
  4. Shokin Y.I. The Method of Differential Approximation / Shokin Y.I. – Springer-Verlag Berlin And Heidelberg Gmbh & Co. – 1983. – 224р.
  5. Самарский А.А. Теория разностных схем. Учебное пособие / Самарский А.А. – М.: Главная редакция физико-математической литературы, 1980. – 616 с.
  6. Tannehill J. C. Computational Fluid Mechanics and Heat Transfer / J.C. Tannehill; R.H. Pletcher; D.A. Anderson. – Hemisphere Pub, 1997. – 792p.
  7. Qiu J., Shu C.-W. Finite-difference WENO schemes with Lax-Wendroff-type time discretizations / J. Qiu, C.-W. Shu // SIAM J.Sci.Comput. – 2003. – v.24. – №6. – p.2185-2198.
  8. Qiu J. Hermite weno schemes with Lax-Wendroff type time discretizations for Hamilton-Jacobi equations/ J. Qiu // Journal of Computational Mathematics. – 2007. – v.25 – p.131-144.
  9. Encyclopedia of Computational Mechanics Volume 1 Fundamentals /Editors Erwin Stein, Rene de Borst, Thomas J. R. Hughes – WILEY, 2004 – 798 p
  10. Shu C.-W., Osher S. Efficient implementation of essentially non-oscillatory shock capturing schemes / C.-W. Shu, S.Osher // J. Comp. Phys. – 1988. – v.77. – p.439-471.
  11. Bucharskyi, V.L. (2007) The method of joint approximation for constructing the finite difference schemes for solving partial derivative equations Tehnicheskaya mekhanika, 1, 50 – 57.
  12. Bucharskyi V.L. (2008) Finite difference scheme of the joint approximation for solving the quazilinear hyperbolic equations Problemy obchisliuvalnoi mekhaniky i mitsnosti konstruktsyi – Dnipropetrovs’k, DNU, 7 – 15.
  13. Bucharskyi V.L., Kalinchuk Е.M. (2011) Symmetrical difference schemes of the joint approximation for solving the linear transport equations Matematychni mashyny i sistemy, 4, 161-165.
  14. Shokin Y.I. (1983) The Method of Differential Approximation. Springer-Verlag Berlin And Heidelberg Gmbh & Co.
  15. Samarskyi A.A. (1980) The theory of difference chemes. Мoskow, USSR: Nauka
  16. Tannehill J. C. (1997) Computational Fluid Mechanics and Heat Transfer. Hemisphere Pub.
  17. Qiu J., Shu C.-W. (2003) Finite-difference WENO schemes with Lax-Wendroff-type time discretizations SIAM J.Sci.Comput, 24(6), 2185-2198.
  18. Qiu J. Hermite weno schemes with Lax-Wendroff type time discretizations for Hamilton-Jacobi equations/ J. Qiu // Journal of Computational Mathematics. – 2007. – v.25 – p.131-144.
  19. Encyclopedia of Computational Mechanics Volume 1 Fundamentals (2004): WILEY
  20. Shu C.-W., Osher S. (1988) Efficient implementation of essentially non-oscillatory shock capturing schemes J. Comp. Phys., 77, 439-471.

Published

2013-04-25

How to Cite

Бучарський, В. Л. (2013). Two-step finite difference schemes of the method of the joint approximation for solving the quasi-linear one-dimensional hyperbolic equations. Eastern-European Journal of Enterprise Technologies, 2(4(62), 34–38. https://doi.org/10.15587/1729-4061.2013.12368

Issue

Section

Mathematics and Cybernetics - applied aspects