Two-step finite difference schemes of the method of the joint approximation for solving the quasi-linear one-dimensional hyperbolic equations
DOI:
https://doi.org/10.15587/1729-4061.2013.12368Keywords:
Method of the joint approximation, finite difference scheme, high order of accuracyAbstract
In present paper the method of the joint approximation for constructing high order of accuracy finite difference schemes is extended on the case of quasi-linear hyperbolic equations and their systems. The new two-step cost-effective way for constructing compact cost-effective finite difference schemes with unlimited order of accuracy is suggested. This approach is based on the method of the joint approximation and one property of the hyperbolic partial derivatives equations. Finite difference schemes up to eleventh order of temporal and spatial accuracy for the one-dimensional Burgers equation and for system of one-dimension gas dynamic are presented. Results of the solution of the used widely test cases are presented also. The data of the calculations confirm the theoretical resultsReferences
- Бучарский, В.Л. Метод совместной аппроксимации построения разностных схем для решения уравнений в частных производных / В.Л. Бучарский // Техническая механика. – 2007. – № 1. – с. 50 – 57.
- Бучарский В.Л. Разностная схема метода совместной аппроксимации для решения квазилинейных гиперболических уравнений / В.Л. Бучарский // Проблеми обчислювальної механіки і міцності конструкцій. – Дніпропетровськ: ДНУ, 2008 . – с. 7 – 15.
- Бучарский В.Л., Калинчук Е.М. Симметричные разностные схемы метода совместной аппроксимации для решения линейного уравнения переноса / В.Л. Бучарский, Е.М Калинчук // Математичні машини і системи. – 2011. – №4. –с. 161-165
- Shokin Y.I. The Method of Differential Approximation / Shokin Y.I. – Springer-Verlag Berlin And Heidelberg Gmbh & Co. – 1983. – 224р.
- Самарский А.А. Теория разностных схем. Учебное пособие / Самарский А.А. – М.: Главная редакция физико-математической литературы, 1980. – 616 с.
- Tannehill J. C. Computational Fluid Mechanics and Heat Transfer / J.C. Tannehill; R.H. Pletcher; D.A. Anderson. – Hemisphere Pub, 1997. – 792p.
- Qiu J., Shu C.-W. Finite-difference WENO schemes with Lax-Wendroff-type time discretizations / J. Qiu, C.-W. Shu // SIAM J.Sci.Comput. – 2003. – v.24. – №6. – p.2185-2198.
- Qiu J. Hermite weno schemes with Lax-Wendroff type time discretizations for Hamilton-Jacobi equations/ J. Qiu // Journal of Computational Mathematics. – 2007. – v.25 – p.131-144.
- Encyclopedia of Computational Mechanics Volume 1 Fundamentals /Editors Erwin Stein, Rene de Borst, Thomas J. R. Hughes – WILEY, 2004 – 798 p
- Shu C.-W., Osher S. Efficient implementation of essentially non-oscillatory shock capturing schemes / C.-W. Shu, S.Osher // J. Comp. Phys. – 1988. – v.77. – p.439-471.
- Bucharskyi, V.L. (2007) The method of joint approximation for constructing the finite difference schemes for solving partial derivative equations Tehnicheskaya mekhanika, 1, 50 – 57.
- Bucharskyi V.L. (2008) Finite difference scheme of the joint approximation for solving the quazilinear hyperbolic equations Problemy obchisliuvalnoi mekhaniky i mitsnosti konstruktsyi – Dnipropetrovs’k, DNU, 7 – 15.
- Bucharskyi V.L., Kalinchuk Е.M. (2011) Symmetrical difference schemes of the joint approximation for solving the linear transport equations Matematychni mashyny i sistemy, 4, 161-165.
- Shokin Y.I. (1983) The Method of Differential Approximation. Springer-Verlag Berlin And Heidelberg Gmbh & Co.
- Samarskyi A.A. (1980) The theory of difference chemes. Мoskow, USSR: Nauka
- Tannehill J. C. (1997) Computational Fluid Mechanics and Heat Transfer. Hemisphere Pub.
- Qiu J., Shu C.-W. (2003) Finite-difference WENO schemes with Lax-Wendroff-type time discretizations SIAM J.Sci.Comput, 24(6), 2185-2198.
- Qiu J. Hermite weno schemes with Lax-Wendroff type time discretizations for Hamilton-Jacobi equations/ J. Qiu // Journal of Computational Mathematics. – 2007. – v.25 – p.131-144.
- Encyclopedia of Computational Mechanics Volume 1 Fundamentals (2004): WILEY
- Shu C.-W., Osher S. (1988) Efficient implementation of essentially non-oscillatory shock capturing schemes J. Comp. Phys., 77, 439-471.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2014 Валерій Леонідович Бучарський
This work is licensed under a Creative Commons Attribution 4.0 International License.
The consolidation and conditions for the transfer of copyright (identification of authorship) is carried out in the License Agreement. In particular, the authors reserve the right to the authorship of their manuscript and transfer the first publication of this work to the journal under the terms of the Creative Commons CC BY license. At the same time, they have the right to conclude on their own additional agreements concerning the non-exclusive distribution of the work in the form in which it was published by this journal, but provided that the link to the first publication of the article in this journal is preserved.
A license agreement is a document in which the author warrants that he/she owns all copyright for the work (manuscript, article, etc.).
The authors, signing the License Agreement with TECHNOLOGY CENTER PC, have all rights to the further use of their work, provided that they link to our edition in which the work was published.
According to the terms of the License Agreement, the Publisher TECHNOLOGY CENTER PC does not take away your copyrights and receives permission from the authors to use and dissemination of the publication through the world's scientific resources (own electronic resources, scientometric databases, repositories, libraries, etc.).
In the absence of a signed License Agreement or in the absence of this agreement of identifiers allowing to identify the identity of the author, the editors have no right to work with the manuscript.
It is important to remember that there is another type of agreement between authors and publishers – when copyright is transferred from the authors to the publisher. In this case, the authors lose ownership of their work and may not use it in any way.