Analysis of dynamics and prediction of reliability indicators of a cooling thermoelement with the predefined geometry of branches
DOI:
https://doi.org/10.15587/1729-4061.2018.123890Keywords:
thermoelectric cooler, geometry of thermoelements, time required to enter a stationary mode, reliability indicatorsAbstract
We have investigated the influence of structural and technological elements on the basic parameters, reliability indicators, and the dynamics of operation of thermoelectric cooling devices under various current modes within the operating range of temperature differences. We analyzed the ratios of correlation between the time required to enter a stationary mode and relative intensity of failures in a cooler, and energy indicators, thermoelectric parameters of thermoelements, structural and technological indicators.
An analysis of the time required to enter a stationary mode was performed for different modes of operation from the maximum cooling capacity to the minimum failure rate. It is shown that in order to reduce the time required for a cooler to enter a stationary mode, at the predefined geometry of thermoelements and temperature difference, it is necessary to employ the mode of maximum cooling capacity.
The quantitative analysis showed that at the predefined geometry of thermoelements branches the time required to enter a stationary working mode does not depend on the number of thermoelements in a thermoelectric cooler. At a difference of temperatures close to the maximum value, the time required to enter a stationary working mode differs slightly for all modes of operation. Comparative analysis of the basic parameters of reliability indicators and dynamical characteristics makes it possible to find compromise solutions when constructing thermoelectric devices taking into consideration the weight of each of the constraints.
From a practical point of view, the results obtained suggest that increasing the cooling rate does not require changes to the existing technology for making thermoelectric coolers. Control over performance speed during transition from one stationary state to another state is executed through the selection of current modes in the operation of a thermoelectric device. In this case, there is a possibility to choose the conditions under which reliability indicators match the permissible limit.
References
- Shalumova, N. A., Shalumov, A. S., Martynov, O. Yu., Bagayeva, T. A. (2011). Analysis and provision of thermal characteristics of radioelectronic facilities using the subsystem ASONIKA-T. Advances in modern radio electronics, 1, 42–49.
- Zebarjadi, M., Esfarjani, K., Dresselhaus, M. S., Ren, Z. F., Chen, G. (2012). Perspectives on thermoelectrics: from fundamentals to device applications. Energy & Environmental Science, 5 (1), 5147–5162. doi: https://doi.org/10.1039/c1ee02497c
- Kofanov, Yu. N. et. al. (2014). System problems of reliability, quality, mathematical modeling and intelligent technologies in innovative projects. Moscow: HRU HES, 532.
- Ndao, S., Peles, Y., Jensen, M. K. (2009). Multi-objective thermal design optimization and comparative analysis of electronics cooling technologies. International Journal of Heat and Mass Transfer, 52 (19-20), 4317–4326. doi: https://doi.org/10.1016/j.ijheatmasstransfer.2009.03.069
- Thermoelectric modules market. Analytical review (2009). RosBussinessConsalting, 92.
- Sootsman, J. R., Chung, D. Y., Kanatzidis, M. G. (2009). New and Old Concepts in Thermoelectric Materials. Angewandte Chemie International Edition, 48 (46), 8616–8639. doi: https://doi.org/10.1002/anie.200900598
- Rowe, D. M. (Ed.) (2012). Materials, Preparation, and Characterization in Thermoelectrics. Vol. 1. Boca Raton: CRC Press, 544.
- Zhang, L., Wu, Z., Xu, X., Xu, H., Wu, Y., Li, P., Yang, P. (2010). Approach on thermoelectricity reliability of board-level backplane based on the orthogonal experiment design. International Journal of Materials and Structural Integrity, 4 (2/3/4), 170. doi: https://doi.org/10.1504/ijmsi.2010.035205
- Choi, H.-S., Seo, W.-S., Choi, D.-K. (2011). Prediction of reliability on thermoelectric module through accelerated life test and Physics-of-failure. Electronic Materials Letters, 7 (3), 271–275. doi: https://doi.org/10.1007/s13391-011-0917-x
- Wereszczak, A. A., Wang, H. (2011). Thermoelectric Mechanical Reliability. Vehicle Technologies Annual Merit Reviewand Peer Evaluation Meeting. Arlington, 18.
- Singh. R. (2008). Experimental Characterization of Thin Film Thermoelectric Materials and Film Deposition VIA Molecular Beam Epitaxial. University of California, 54.
- Zaykov, V., Mescheryakov, V., Zhuravlov, Y. (2017). Analysis of the possibility to control the inertia of the thermoelectric cooler. Eastern-European Journal of Enterprise Technologies, 6 (8 (90)), 17–24. doi: https://doi.org/10.15587/1729-4061.2017.116005
- Zaykov, V. P., Kinshova, L. A., Moiseev, V. F. (2009). Prediction of reliability on thermoelectric cooling devices. Kn. 1 Single-stage devices. Odessa: Politehperiodika, 120.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2018 Vladimir Zaykov, Vladimir Mescheryakov, Yurii Zhuravlov, Dmitry Mescheryakov
This work is licensed under a Creative Commons Attribution 4.0 International License.
The consolidation and conditions for the transfer of copyright (identification of authorship) is carried out in the License Agreement. In particular, the authors reserve the right to the authorship of their manuscript and transfer the first publication of this work to the journal under the terms of the Creative Commons CC BY license. At the same time, they have the right to conclude on their own additional agreements concerning the non-exclusive distribution of the work in the form in which it was published by this journal, but provided that the link to the first publication of the article in this journal is preserved.
A license agreement is a document in which the author warrants that he/she owns all copyright for the work (manuscript, article, etc.).
The authors, signing the License Agreement with TECHNOLOGY CENTER PC, have all rights to the further use of their work, provided that they link to our edition in which the work was published.
According to the terms of the License Agreement, the Publisher TECHNOLOGY CENTER PC does not take away your copyrights and receives permission from the authors to use and dissemination of the publication through the world's scientific resources (own electronic resources, scientometric databases, repositories, libraries, etc.).
In the absence of a signed License Agreement or in the absence of this agreement of identifiers allowing to identify the identity of the author, the editors have no right to work with the manuscript.
It is important to remember that there is another type of agreement between authors and publishers – when copyright is transferred from the authors to the publisher. In this case, the authors lose ownership of their work and may not use it in any way.