Development of methods and algorithms of processing electrocardiogram

Authors

  • Олеся Михайлівна Омельчук National Technical University of Ukraine ‘Kyiv polytechnic Institute’ Peremohy 37, Kyiv, 03056, Ukraine
  • Іван Вікторович Максимчук National Technical University of Ukraine ‘Kyiv polytechnic Institute’ Peremohy 37, Kyiv, 03056, Ukraine
  • Олександр Васильович Осадчий National Technical University of Ukraine ‘Kyiv polytechnic Institute’ Peremohy 37, Kyiv, 03056, Ukraine

DOI:

https://doi.org/10.15587/1729-4061.2013.12443

Keywords:

ECG, Holter monitoring, heart rate, wavelet transform, expert system, Matlab, Vision

Abstract

Recent studies show that even heart rate of healthy quiescent people is inclined to significant fluctuations that are not necessarily a precursor of any abnormalities of the body. Various heartbeat causes different length of fragments of electrocardiogram that significantly complicates the morphological analysis of electrocardiograms in real time. Therefore, the attention of specialists aimed at the development of an expert system to process electrocardiograms.

This article discusses the designing of an expert system that allows high accuracy of detection and measurement of parameters of elements of the electrocardiogram, and the necessity of a model of a reference signal, analysis of which will help shorten the term of the effectiveness detection and the appropriateness of use of corresponding software. Namely, we have constructed two models of ideal electrocardiogram, the first one for the Matlab environment, the second one for the "Vision" module.

As a result, we can say that the apparatus of continuous wavelet transform in Matlab environment is not sufficiently effective to solve the identification problem, and the "Vision" module gives an obvious time-frequency scan that permits quickly and without additional calculations to determine the extent of presence of a frequency at a particular moment

Author Biographies

Олеся Михайлівна Омельчук, National Technical University of Ukraine ‘Kyiv polytechnic Institute’ Peremohy 37, Kyiv, 03056

Student

Instrument Making Department

Іван Вікторович Максимчук, National Technical University of Ukraine ‘Kyiv polytechnic Institute’ Peremohy 37, Kyiv, 03056

PhD, Associate Professor

Instrument Making Department

Олександр Васильович Осадчий, National Technical University of Ukraine ‘Kyiv polytechnic Institute’ Peremohy 37, Kyiv, 03056

Assistant

Instrument Making Department

References

  1. Повышение эффективности регистрации формы электрокардиосигнала корреляционной обработкой в цифровой осциллографии [Текст] / А. М. Беркутов, С. Г. Гуржин, А. А. Дунаев, Е. М. Прошин. — Биомедицинские технологии и радиоэлектроника, 2002. — 4-13 с.
  2. Валужис, А. К. Статистический алгоритм структурного анализа электрокардиосигнала [Текст] / А. К. Валужис, А. П. Рашимас. — Кибернетика, 1979. — 91-95 с.
  3. Goldberger, A. Fractal mechanisms in the electrophysiology of the heart [Текст] / A. Goldberger. — IEEE Eng. Med. Biol., 1992. — 47-52 c.
  4. Генкин, A. A. Новая информационная технология анализа медицинских данных [Текст] / A. A. Генкин. — СПБ.: Политехника, 1999. — 192 c.
  5. Мурашко, В. В. Электрокардиография [Текст] / В. В. Мурашко, А. В. Струтинский. — М.: Медицина, 1991. — 288 с.
  6. Панага, А. И. Разработка методов и алгоритмов обработки ЭКГ для выявления гипертрофии сердца [Текст] / А. И. Панага. — Донецк, 2003. — 387 c.
  7. Abreu-Lima, С. Evaluation of ECG interpretation results obtained by computer and cardiologist [Текст] / C. Abreu-Lima. — Meth. Inf. Med., 1990. — 308-316 p.
  8. Methodology of ECG Interpretation in the Hanover Program [Текст] / C. Zywienz, D. Borovsky, G. Goettsch, G. Joseph. — Meth. Inf. Med., 1990. — 375 p.
  9. Furno, G. QRS detection using automata theory in battery powered microprocessor system [Текст] / G. Furno, W. Tompkins. — Proc. IEEE Frontiers Eng. Health Care, 1982. — 155 p.
  10. Pan, J. A Real-Time QRS Detection Algorithm [Текст] / J. Pan, W. Tompkins. — IEEE Transaction on Biomed. Engr., 1985. — 230-236 p.
  11. Berkutov, A., Hhurzhyn, S., Dunaiev, A., Proshin, E. (2002). Improving the effectiveness of registration electrocardio signal by correlation the processing in digital oscillography. Biomedical technologies and radioelectronics, 7, 4-13.
  12. Valuzhis, A. (1979). Statistical algorithm of structural analysis electrocardio signal. Cybernetics, 3, 91-95.
  13. Goldberger, A. (1992). Fractal mechanisms in the electrophysiology of the heart. IEEE Eng. Med. Biol., 11, 47-52.
  14. Genkin, A. (1999). New information technologies of analysis of medical data. Polytechnic, 192.
  15. Murashko, V.(1991). Electrocardiography. Moscow: Medicine, 288.
  16. Panaga, A.(2003). Development of methods and algorithms for ECG to detect of cardiac hypertrophy. Donetsk, 387.
  17. Abreu-Lima, С. (1990). Evaluation of ECG interpretation results obtained by computer and cardiologist. Meth. Inf. Med., 29, 308-316.
  18. Zywienz, С., Borovsky, D., Goettsch, G., Joseph, G. (1990). Methodology of ECG Interpretation in the Hanover Program. Meth. Inf. Med., 29, 375.
  19. Furno, G., Tompkins, W. (1982). QRS detection using automata theory in battery powered microprocessor system. Proc. IEEE Frontiers Eng. Health Care, 9, 155.
  20. Pan, J., Tompkins, W. (1985). A Real-Time QRS Detection Algorithm. IEEE Transaction on Biomed. Engr., 32, 230-236.

Published

2013-04-25

How to Cite

Омельчук, О. М., Максимчук, І. В., & Осадчий, О. В. (2013). Development of methods and algorithms of processing electrocardiogram. Eastern-European Journal of Enterprise Technologies, 2(9(62), 39–42. https://doi.org/10.15587/1729-4061.2013.12443

Issue

Section

Information and controlling system