Development of the method for decomposition of superpositions of unknown pulsed signals using the second­order adaptive spectral analysis

Authors

DOI:

https://doi.org/10.15587/1729-4061.2018.126578

Keywords:

pulse, model, signal, superposition, spectrum, echo-pulse image, measurement noise

Abstract

We considered the issue of "intuitive" analysis, processing, and synthesis of unknown pulse sequences in a detailed form. We studied both classical methods of analysis with all pluses and minuses and the developed prospective method created on their basis. The developed method is adaptive, it is based on the consistent use of various methods of spectral analysis, which increases reliability, sensitivity, and resolution capability of visual analysis of echo-pulse images. Thus, we solved the problem on processing pulse signals. The proposed method makes it possible to increase resolution capability in the processing of signals and images without using a priori information on the form of elementary pulses. It is resistant to the influence of measuring noise. We presented the results of numerical simulation and actual verification on the example of a seismic image. The considered method has a significant development potential, both in theoretical and application aspects (first of all, in areas of ultrasonic medical diagnosis, seismic imaging, and non-destructive testing).

Author Biographies

Alexander Stepanenko, Zaporizhzhya National Technical University Zhukovskoho str., 64, Zaporizhzhya, Ukraine, 69063

PhD, Associate Professor

Department of Software Tools

Andrii Oliinyk, Zaporizhzhya National Technical University Zhukovskoho str., 64, Zaporizhzhya, Ukraine, 69063

PhD, Associate Professor

Department of Software Tools

Larysa Deineha, Zaporizhzhya National Technical University Zhukovskoho str., 64, Zaporizhzhya, Ukraine, 69063

Senior Lecturer

Department of Software Tools

Tetiana Zaiko, Zaporizhzhya National Technical University Zhukovskoho str., 64, Zaporizhzhya, Ukraine, 69063

PhD, Associate Professor

Department of Software Tools

References

  1. Hill, K., Bamber, J., Ter Haar, G., Dickinson, R. (2008). Ultrasound in Medicine. Physical Basis of Application. Мoscow: Fizmatlit, 542.
  2. Waters, K., Bogarik, G. N., Gurvich, I. I. (2006). Seismic Exploration. Tver': AIS, 744.
  3. Grinev, A. Yu. (2005). Sub-surface radar issues. Мoscow: Radiotechnics, 416.
  4. Nikitin, A. A., Petrov, A. V. (2008). Theoretical bases of geophysical information processing. Мoscow: RSHU, 112.
  5. Bates, R., McDonnell, M. (1989). Restoration and reconstruction of images. Мoscow: MIR, 336.
  6. Kabanihin, S. I. (2009). Inverse and incorrect tasks. Novosibirsk: Siberian Scientific Publishing House, 457.
  7. Zverev, V. A., Stromkov, A. A. (2001). Selection of signals from interference by numerical methods. Nizhniy Novgorod: IPF RAN, 188.
  8. Chan, Y., Lavoie, J., Plant, J. (1981). A parameter estimation approach to estimation of frequencies of sinusoids. IEEE Transactions on Acoustics, Speech, and Signal Processing, 29 (2), 214–219. doi: 10.1109/tassp.1981.1163543
  9. Marple, S. L. (1990). Digital spectral analysis and its applications. Мoscow: MIR, 584.
  10. Bamber, J. C., Daft, C. (1986). Adaptive filtering for reduction of speckle in ultrasonic pulse-echo images. Ultrasonics, 24 (1), 41–44. doi: 10.1016/0041-624x(86)90072-7
  11. Ng, J., Prager, R., Kingsbury, N., Treece, G., Gee, A. (2007). Wavelet restoration of medical pulse-echo ultrasound images in an EM framework. IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, 54 (3), 550–568. doi: 10.1109/tuffc.2007.278
  12. Stepanenko, О. О., Piza, D. M. (2012). Program complex for analysis and treatment echo-pulse images. Radio Electronics, Computer Science, Control, 2. doi: 10.15588/1607-3274-2011-2-19
  13. Xiao, L., Fuja, T. E., Kliewer, J., Costello, D. J. (2007). Signal Superposition Coded Cooperative Diversity: Analysis and Optimization. 2007 IEEE Information Theory Workshop. doi: 10.1109/itw.2007.4313145
  14. Wang, Z.-G., Wang, S.-Z., Feng, W.-L., Fu, Y.-P. (2016). The Study on Estimation of Unknown Parameters for Uncertainty Distribution. 2016 International Conference on Information System and Artificial Intelligence (ISAI). doi: 10.1109/isai.2016.0113
  15. Zhang, L., Yang, L., Luo, T. (2016). Unified Saliency Detection Model Using Color and Texture Features. PLOS ONE, 11 (2), e0149328. doi: 10.1371/journal.pone.0149328
  16. Zheng, Y., Jeon, B., Xu, D., Wu, Q. M., Zhang, H. (2015). Image segmentation by generalized hierarchical fuzzy C-means algorithm. Journal of Intelligent and Fuzzy Systems, 28 (2), 961–973.
  17. Theis, L., van den Oord, A., Bethge, M. (2016). A note on the evaluation of generative models. International Conference on Learning Representations. Available at: https://arxiv.org/pdf/1511.01844.pdf
  18. Di, Y., Lee, C., Wang, Z., Chang, C., Li, J. (2016). A Robust and Removable Watermarking Scheme Using Singular Value Decomposition. KSII Transactions on Internet and Information Systems, 10 (12), 5831–5848. doi: 10.3837/tiis.2016.12.008
  19. Zhao, Y., Zhao, Q., Tong, M.-L. (2016). Lexicographic image hash based on space and frequency features. Journal of Donghua University (English Edition), 33 (6), 907–910.
  20. Mosquera, J. C., Isaza, C. A., Gomez, G. A. (2012). Technical analog-digital for segmentation of spectral images acquired with an accousto-optic system. 2012 XVII Symposium of Image, Signal Processing, and Artificial Vision (STSIVA). doi: 10.1109/stsiva.2012.6340600
  21. Zhao, L. (2011). Image enhancement of restored motion blurred images. 2011 International Conference on Optical Instruments and Technology: Optoelectronic Imaging and Processing Technology. doi: 10.1117/12.904786
  22. Thüring, T., Modregger, P., Pinzer, B. R., Wang, Z., Stampanoni, M. (2011). Non-linear regularized phase retrieval for unidirectional X-ray differential phase contrast radiography. Optics Express, 19 (25), 25545. doi: 10.1364/oe.19.025545
  23. Gorelik, L. I., Solyakov, V. N., Trenin, D. Yu. (2011). Low contrast dual-band infrared image processing. Applied Physics, 4, 88–95.
  24. Xu, X., Wang, Y., Tang, J., Zhang, X., Liu, X. (2011). Adaptive Variance Based Sharpness Computation for Low Contrast Images. Lecture Notes in Computer Science, 335–341. doi: 10.1007/978-3-642-24728-6_45
  25. Subbotin, S., Oliinyk, A., Skrupsky, S. (2015). Individual prediction of the hypertensive patient condition based on computational intelligence. 2015 International Conference on Information and Digital Technologies. doi: 10.1109/dt.2015.7222996
  26. Oliinyk, A., Zaiko, T., Subbotin, S. (2014). Training sample reduction based on association rules for neuro-fuzzy networks synthesis. Optical Memory and Neural Networks, 23 (2), 89–95. doi: 10.3103/s1060992x14020039
  27. Subbotin, S., Oliinyk, A., Levashenko, V., Zaitseva, E. (2016). Diagnostic rule mining based on artificial immune systems for a case of uneven distribution of classes in sample. Communications, 3, 3–11.
  28. Oliinyk, A. O., Zayko, T. A., Subbotin, S. O. (2014). Synthesis of Neuro-Fuzzy Networks on the Basis of Association Rules. Cybernetics and Systems Analysis, 50 (3), 348–357. doi: 10.1007/s10559-014-9623-7
  29. Oliinyk, A. O., Oliinyk, O. O., Subbotin, S. A. (2012). Agent technologies for feature selection. Cybernetics and Systems Analysis, 48 (2), 257–267. doi: 10.1007/s10559-012-9405-z
  30. Oliinyk, A. O., Zaiko, T. A., Subbotin, S. A. (2014). Factor analysis of transaction data bases. Automatic Control and Computer Sciences, 48 (2), 87–96. doi: 10.3103/s0146411614020060
  31. Shkarupylo, V., Skrupsky, S., Oliinyk, A., Kolpakova, T. (2017). Development of stratified approach to software defined networks simulation. Eastern-European Journal of Enterprise Technologies, 5 (9 (89)), 67–73. doi: 10.15587/1729-4061.2017.110142
  32. Tabunshchyk, G., Van Merode, D., Arras, P., Henke, K. (2016). Remote experiments for reliability studies of embedded systems. 2016 13th International Conference on Remote Engineering and Virtual Instrumentation (REV). doi: 10.1109/rev.2016.7444443
  33. Henke, K., Tabunshchyk, G., Wuttke, H.-D., Vietzke, T., Ostendorff, S. (2014). Using Interactive Hybrid Online Labs for Rapid Prototyping of Digital Systems. International Journal of Online Engineering (iJOE), 10 (5), 57. doi: 10.3991/ijoe.v10i5.3994
  34. Oliinyk, A., Skrupsky, S., Subbotin, S. A. (2016). Parallel Computer System Resource Planning for Synthesis of Neuro-Fuzzy Networks. Advances in Intelligent Systems and Computing, 88–96. doi: 10.1007/978-3-319-48923-0_12

Downloads

Published

2018-03-22

How to Cite

Stepanenko, A., Oliinyk, A., Deineha, L., & Zaiko, T. (2018). Development of the method for decomposition of superpositions of unknown pulsed signals using the second­order adaptive spectral analysis. Eastern-European Journal of Enterprise Technologies, 2(9 (92), 48–54. https://doi.org/10.15587/1729-4061.2018.126578

Issue

Section

Information and controlling system