A multilevel approach to the dynamic hiererchical clustering for complex types of shapes

Authors

  • Тетяна Борисівна Шатовська Kharkiv National University of Radioelectronics Lenina 16, Kharkov, Ukraine, 61166, Ukraine
  • Анастасія Олександрівна Заремська Kharkiv National University of Radioelectronics Lenina 16, Kharkov, Ukraine, 61166, Ukraine

DOI:

https://doi.org/10.15587/1729-4061.2013.12759

Keywords:

Chameleon, CURE, ROCK, Database, clustering, k-NN graph, hypergraph, neighbor, multiservice

Abstract

In data mining, efforts have been aimed at finding methods for efficient and effective cluster analysis in large databases. Active research topics focus on the scalability of clustering methods, the effectiveness of  clustering methods complex shapes and types of data, high-dimensional clustering techniques, and clustering  methods of mixed numerical and categorical data in large databases. One of the most accurate approaches based on dynamic modelling of cluster similarity is called Chameleon. In this paper we present a modified hierarchical clustering algorithm based on the main idea of Chameleon and the effectiveness of suggested approach will be demonstrated by the experimental results

Author Biographies

Тетяна Борисівна Шатовська, Kharkiv National University of Radioelectronics Lenina 16, Kharkov, Ukraine, 61166

Associate Professor

Department of Software Engineering

Анастасія Олександрівна Заремська, Kharkiv National University of Radioelectronics Lenina 16, Kharkov, Ukraine, 61166

Student

Department of Software Engineering

References

  1. [Al, 97] Alpert C. J., Huang J. H. and Kahng A. B., Multilevel circuit partitioning. In: Proc. of the 34th ACM/IEEE Design Automation Conference. 1997.
  2. [Fi, 82] Fiduccia C. M. and Mattheyses R. M., .A Linear-time Heuristic for Improving
  3. [GRS, 99] Guha S., Rastogi R., Shim K. ROCK: Robust Clustering using linKs, (ICDE’99)
  4. [KAK, 97] Karypis G., Aggarwal R., V. Kumar. Multilevel hypergraph partitioning: Application in VLSI domain. In: Proceedings of the Design and Automation Conference. 1997.
  5. [KKa, 98] Karypis G.and Kumar V.. A Fast and High Quality Multilevel Scheme for Partitioning Irregular Graphs. SIAM Journal on Scientific Computing, 1998.
  6. [KKb, 98] Karypis G., and Kumar V., hMETIS 1.5.3: A hypergraph partitioning package. Technical report. Department of Computer Science, University of Minnesota, 1998
  7. [KHK, 99a] Karypis G.,. Han E.-H, and Kumar V.. CHAMELEON: A Hierarchical Clustering Algorithms Using Dynamic Modeling. IEEE Computer, 32(8):68–75, 1999.
  8. [KHK, 99b] Karypis G., Han E.-H. and Kumar V.. Multilevel k-way hypergraph partitioning. In Proceedings of the Design and Automation Conference, 1999.
  9. [Ka, 03] Karypis G., CLUTO 2.1.1. A Clustering Toolkit. Technical report. Department of Computer Science, University of Minnesota, 2003
  10. [Ka lab.] http://www.cs.umn.edu/˜karypis.
  11. [Mi, 97] Mitchell T. M.. Machine Learning. McGraw Hill, 1997

Downloads

Published

2013-04-25

How to Cite

Шатовська, Т. Б., & Заремська, А. О. (2013). A multilevel approach to the dynamic hiererchical clustering for complex types of shapes. Eastern-European Journal of Enterprise Technologies, 2(10(62), 66–69. https://doi.org/10.15587/1729-4061.2013.12759

Issue

Section

Applied Information Technology