Study of the method for assessing atmospheric turbulence by the envelope of sodar signals
DOI:
https://doi.org/10.15587/1729-4061.2018.127699Keywords:
acoustic sounding, sodar, turbulence, echo-signal, envelope, aviation meteorology, wind power industryAbstract
The method for measuring the intensity of atmospheric turbulence based on assessment of statistical characteristics of the sodar signal envelope was investigated. This method requires no changes to the sodar hardware, but rather gives the possibility to make fuller use of echo-signals in order to obtain meteorological information.
Through theoretical analysis, it was shown that the echo-signal envelope is distributed by the Rice law. The parameter of the law of envelope distribution is unambiguously associated with intensity of atmospheric turbulence.
Assuming standard stratification of the atmosphere, the values of the parameter of the law of envelope distribution for four classes of atmospheric turbulence according to the ICAO classification were calculated: weak, moderate, strong and storm.
Convergence of the experimental law of distribution of the envelope of acoustic echo-signals to the theoretical law at different measurement time was studied. It was experimentally determined that the theoretical and experimental laws of distribution of the sodar signal envelope mismatch with probability of less than 5 % at measurement time from 10 to 30 minutes. The results of measurement using this method converge to a stationary value at measurement time of more than 10 min.
The use of the examined method for assessment of atmospheric turbulence in addition to already used methods will make it possible to increase accuracy and time resolution of sodarsReferences
- Krasnenko, N. P. (2001). Akusticheskoe zondirovanie atmosfernogo pogranichnogo sloya. Tomsk: Vodoley, 278.
- Finn, A., Rogers, K., Rice, F., Meade, J., Holland, G., May, P. (2017). A Comparison of Vertical Atmospheric Wind Profiles Obtained from Monostatic Sodar and Unmanned Aerial Vehicle–Based Acoustic Tomography. Journal of Atmospheric and Oceanic Technology, 34 (10), 2311–2328. doi: 10.1175/jtech-d-17-0070.1
- Kouznetsov, R. D. (2008). Quantitative estimate of the role of temperature gradients in sodar echo signal formation. IOP Conference Series: Earth and Environmental Science, 1, 012039. doi: 10.1088/1755-1307/1/1/012039
- Argentini, S., Petenko, I., Bucci, S., Mastrantonio, G., Conidi, A., Federico, S. et. al. (2016). LACOST, an atmospheric laboratory on the Tyrrhenian coastline. 18th International Symposium for the Advancement of Boundary layer remote Sensing. Varna. Available at: https://www.researchgate.net/publication/322069919
- Reddy, T. L., Reddy, N. S. K., Gopal, K. R., Balakrishnaiah, G., Reddy, R. R. (2017). Comparison studies of sodar winds with the NCEP/NCAR Reanalysis II winds over a semi-arid region Anantapur. International Tropical Meteorology Symposium. Ahmedabad, 10–13. Available at: https://www.researchgate.net/publication/322024402
- Luiz Silva, W., Albuquerque Neto, F. L., França, G. B., Matschinske, M. R. (2016). Conceptual model for runway change procedure in Guarulhos International Airport based on SODAR data. The Aeronautical Journal, 120 (1227), 725–734. doi: 10.1017/aer.2016.33
- Peña, A., Hasager, C. B., Lange, J. et. al. (2013). Remote Sensing for Wind Energy. DTU Wind Energy, 308. Available at: http://orbit.dtu.dk/files/55501125/Remote_Sensing_for_Wind_Energy.pdf
- Chaurasiya, P. K., Ahmed, S., Warudkar, V. (2017). Wind characteristics observation using Doppler-SODAR for wind energy applications. Resource-Efficient Technologies, 3 (4), 495–505. doi: 10.1016/j.reffit.2017.07.001
- Khan, K. S., Tariq, M. (2018). Wind resource assessment using SODAR and meteorological mast – A case study of Pakistan. Renewable and Sustainable Energy Reviews, 81, 2443–2449. doi: 10.1016/j.rser.2017.06.050
- Yazidi, H. Sodar measurements in wind energy industry state of the art. Available at: https://www.academia.edu/20671917
- Krasnenko, N. P., Shamanaeva, L. G. (2016). Sodars and their application for investigation of the turbulent structure of the lower atmosphere. IOP Conference Series: Earth and Environmental Science, 48, 012025. doi: 10.1088/1755-1315/48/1/012025
- Bradley, S., Barlow, J., Lally, J., Halois, C. (2015). A sodar for profiling in a spatially inhomogeneous urban environment. Meteorologische Zeitschrift, 24 (6), 615–624. doi: 10.1127/metz/2015/0657
- Underwood, K. H., Shamanaeva, L. G. (2010). Turbulence characteristics from minisodar data. Russian Physics Journal, 53 (5), 526–532. doi: 10.1007/s11182-010-9453-7
- Kapegesheva, O. F., Krasnenko, N. P., Stafeev, P. G., Shamanaeva, L. G. (2013). Influence of the averaging time on the quality of reconstruction of small-scale wind turbulence characteristics in acoustic sounding. Russian Physics Journal, 55 (10), 1132–1136. doi: 10.1007/s11182-013-9933-7
- Ulianov, Y. N., Skvortsov, V. S., Vetrov, V. I., Misailov, V. L., Maksimova, N. G. (2013). Parametric acoustic antenna for noise-proof pulse sodar. 2013 IX Internatioal Conference on Antenna Theory and Techniques. doi: 10.1109/icatt.2013.6650760
- Shifrin, Y. S., Ulianov, Y. N., Vetrov, V. I., Misailov, V. L. (2011). Noise-protected antenna for a pulse acoustic atmospheric sounder. 2011 VIII International Conference on Antenna Theory and Techniques. doi: 10.1109/icatt.2011.6170724
- Kouznetsov, R. D. (2009). The multi-frequency sodar with high temporal resolution. Meteorologische Zeitschrift, 18 (2), 169–173. doi: 10.1127/0941-2948/2009/0373
- Kurniawan, H. D., Suksmono, A. B. (2016). A compressive-sampling Stepped-Frequency Continuous Wave sodar system. 2016 10th International Conference on Telecommunication Systems Services and Applications (TSSA). doi: 10.1109/tssa.2016.7871079
- Sheiko, S. O., Sidorov, H. I., Polonska, A. S., Kartashov, V. M. (2017). Pat. No. 121159 UA. Akustychnyi prystriy dlia vyznachennia parametriv turbulentnosti v atmosfernomu prykordonnomu shari. MPK: G01S 13/95, G01W 1/06. No. u201706157; declareted: 19.06.2017; published: 27.11.2017, Bul. No. 22, 6.
- Manual of Aeronautical Meteorological Practice (2011). ICAO: Doc. 8896 AN/893. Available at: https://skybrary.aero/bookshelf/books/2506.pdf
- Leonidov, V. I. (2012). Statistical descriptions of the echosignals of acoustic sounding in the area of megalopolis. Eastern-European Journal of Enterprise Technologies, 6 (4 (60)), 46–50. Available at: http://journals.uran.ua/eejet/article/view/5683/5113
- Semenec, V. V., Leonidov, V. I. (2011). Acoustic sounding of atmosphere in the problem of heat exchange processes study in the area of megalopolis. Eastern-European Journal of Enterprise Technologies, 6 (8 (54)), 45–49. Available at: http://journals.uran.ua/eejet/article/view/2328/2132
- Tihonov, V. I. (1982). Statisticheskaya radiotekhnika. Moscow: Radio i svyaz', 624.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2018 Sergiy Sheiko
This work is licensed under a Creative Commons Attribution 4.0 International License.
The consolidation and conditions for the transfer of copyright (identification of authorship) is carried out in the License Agreement. In particular, the authors reserve the right to the authorship of their manuscript and transfer the first publication of this work to the journal under the terms of the Creative Commons CC BY license. At the same time, they have the right to conclude on their own additional agreements concerning the non-exclusive distribution of the work in the form in which it was published by this journal, but provided that the link to the first publication of the article in this journal is preserved.
A license agreement is a document in which the author warrants that he/she owns all copyright for the work (manuscript, article, etc.).
The authors, signing the License Agreement with TECHNOLOGY CENTER PC, have all rights to the further use of their work, provided that they link to our edition in which the work was published.
According to the terms of the License Agreement, the Publisher TECHNOLOGY CENTER PC does not take away your copyrights and receives permission from the authors to use and dissemination of the publication through the world's scientific resources (own electronic resources, scientometric databases, repositories, libraries, etc.).
In the absence of a signed License Agreement or in the absence of this agreement of identifiers allowing to identify the identity of the author, the editors have no right to work with the manuscript.
It is important to remember that there is another type of agreement between authors and publishers – when copyright is transferred from the authors to the publisher. In this case, the authors lose ownership of their work and may not use it in any way.