Study of the method for assessing atmospheric turbulence by the envelope of sodar signals

Authors

DOI:

https://doi.org/10.15587/1729-4061.2018.127699

Keywords:

acoustic sounding, sodar, turbulence, echo-signal, envelope, aviation meteorology, wind power industry

Abstract

The method for measuring the intensity of atmospheric turbulence based on assessment of statistical characteristics of the sodar signal envelope was investigated. This method requires no changes to the sodar hardware, but rather gives the possibility to make fuller use of echo-signals in order to obtain meteorological information.

Through theoretical analysis, it was shown that the echo-signal envelope is distributed by the Rice law. The parameter of the law of envelope distribution is unambiguously associated with intensity of atmospheric turbulence.

Assuming standard stratification of the atmosphere, the values of the parameter of the law of envelope distribution for four classes of atmospheric turbulence according to the ICAO classification were calculated: weak, moderate, strong and storm.

Convergence of the experimental law of distribution of the envelope of acoustic echo-signals to the theoretical law at different measurement time was studied. It was experimentally determined that the theoretical and experimental laws of distribution of the sodar signal envelope mismatch with probability of less than 5 % at measurement time from 10 to 30 minutes. The results of measurement using this method converge to a stationary value at measurement time of more than 10 min.

The use of the examined method for assessment of atmospheric turbulence in addition to already used methods will make it possible to increase accuracy and time resolution of sodars

Author Biography

Sergiy Sheiko, Kharkiv National University of Radio Electronics Nauky ave., 14, Kharkiv, Ukraine, 61166

PhD

Department of Media Engineering and Information Radio Electronic Systems

References

  1. Krasnenko, N. P. (2001). Akusticheskoe zondirovanie atmosfernogo pogranichnogo sloya. Tomsk: Vodoley, 278.
  2. Finn, A., Rogers, K., Rice, F., Meade, J., Holland, G., May, P. (2017). A Comparison of Vertical Atmospheric Wind Profiles Obtained from Monostatic Sodar and Unmanned Aerial Vehicle–Based Acoustic Tomography. Journal of Atmospheric and Oceanic Technology, 34 (10), 2311–2328. doi: 10.1175/jtech-d-17-0070.1
  3. Kouznetsov, R. D. (2008). Quantitative estimate of the role of temperature gradients in sodar echo signal formation. IOP Conference Series: Earth and Environmental Science, 1, 012039. doi: 10.1088/1755-1307/1/1/012039
  4. Argentini, S., Petenko, I., Bucci, S., Mastrantonio, G., Conidi, A., Federico, S. et. al. (2016). LACOST, an atmospheric laboratory on the Tyrrhenian coastline. 18th International Symposium for the Advancement of Boundary layer remote Sensing. Varna. Available at: https://www.researchgate.net/publication/322069919
  5. Reddy, T. L., Reddy, N. S. K., Gopal, K. R., Balakrishnaiah, G., Reddy, R. R. (2017). Comparison studies of sodar winds with the NCEP/NCAR Reanalysis II winds over a semi-arid region Anantapur. International Tropical Meteorology Symposium. Ahmedabad, 10–13. Available at: https://www.researchgate.net/publication/322024402
  6. Luiz Silva, W., Albuquerque Neto, F. L., França, G. B., Matschinske, M. R. (2016). Conceptual model for runway change procedure in Guarulhos International Airport based on SODAR data. The Aeronautical Journal, 120 (1227), 725–734. doi: 10.1017/aer.2016.33
  7. Peña, A., Hasager, C. B., Lange, J. et. al. (2013). Remote Sensing for Wind Energy. DTU Wind Energy, 308. Available at: http://orbit.dtu.dk/files/55501125/Remote_Sensing_for_Wind_Energy.pdf
  8. Chaurasiya, P. K., Ahmed, S., Warudkar, V. (2017). Wind characteristics observation using Doppler-SODAR for wind energy applications. Resource-Efficient Technologies, 3 (4), 495–505. doi: 10.1016/j.reffit.2017.07.001
  9. Khan, K. S., Tariq, M. (2018). Wind resource assessment using SODAR and meteorological mast – A case study of Pakistan. Renewable and Sustainable Energy Reviews, 81, 2443–2449. doi: 10.1016/j.rser.2017.06.050
  10. Yazidi, H. Sodar measurements in wind energy industry state of the art. Available at: https://www.academia.edu/20671917
  11. Krasnenko, N. P., Shamanaeva, L. G. (2016). Sodars and their application for investigation of the turbulent structure of the lower atmosphere. IOP Conference Series: Earth and Environmental Science, 48, 012025. doi: 10.1088/1755-1315/48/1/012025
  12. Bradley, S., Barlow, J., Lally, J., Halois, C. (2015). A sodar for profiling in a spatially inhomogeneous urban environment. Meteorologische Zeitschrift, 24 (6), 615–624. doi: 10.1127/metz/2015/0657
  13. Underwood, K. H., Shamanaeva, L. G. (2010). Turbulence characteristics from minisodar data. Russian Physics Journal, 53 (5), 526–532. doi: 10.1007/s11182-010-9453-7
  14. Kapegesheva, O. F., Krasnenko, N. P., Stafeev, P. G., Shamanaeva, L. G. (2013). Influence of the averaging time on the quality of reconstruction of small-scale wind turbulence characteristics in acoustic sounding. Russian Physics Journal, 55 (10), 1132–1136. doi: 10.1007/s11182-013-9933-7
  15. Ulianov, Y. N., Skvortsov, V. S., Vetrov, V. I., Misailov, V. L., Maksimova, N. G. (2013). Parametric acoustic antenna for noise-proof pulse sodar. 2013 IX Internatioal Conference on Antenna Theory and Techniques. doi: 10.1109/icatt.2013.6650760
  16. Shifrin, Y. S., Ulianov, Y. N., Vetrov, V. I., Misailov, V. L. (2011). Noise-protected antenna for a pulse acoustic atmospheric sounder. 2011 VIII International Conference on Antenna Theory and Techniques. doi: 10.1109/icatt.2011.6170724
  17. Kouznetsov, R. D. (2009). The multi-frequency sodar with high temporal resolution. Meteorologische Zeitschrift, 18 (2), 169–173. doi: 10.1127/0941-2948/2009/0373
  18. Kurniawan, H. D., Suksmono, A. B. (2016). A compressive-sampling Stepped-Frequency Continuous Wave sodar system. 2016 10th International Conference on Telecommunication Systems Services and Applications (TSSA). doi: 10.1109/tssa.2016.7871079
  19. Sheiko, S. O., Sidorov, H. I., Polonska, A. S., Kartashov, V. M. (2017). Pat. No. 121159 UA. Akustychnyi prystriy dlia vyznachennia parametriv turbulentnosti v atmosfernomu prykordonnomu shari. MPK: G01S 13/95, G01W 1/06. No. u201706157; declareted: 19.06.2017; published: 27.11.2017, Bul. No. 22, 6.
  20. Manual of Aeronautical Meteorological Practice (2011). ICAO: Doc. 8896 AN/893. Available at: https://skybrary.aero/bookshelf/books/2506.pdf
  21. Leonidov, V. I. (2012). Statistical descriptions of the echosignals of acoustic sounding in the area of megalopolis. Eastern-European Journal of Enterprise Technologies, 6 (4 (60)), 46–50. Available at: http://journals.uran.ua/eejet/article/view/5683/5113
  22. Semenec, V. V., Leonidov, V. I. (2011). Acoustic sounding of atmosphere in the problem of heat exchange processes study in the area of megalopolis. Eastern-European Journal of Enterprise Technologies, 6 (8 (54)), 45–49. Available at: http://journals.uran.ua/eejet/article/view/2328/2132
  23. Tihonov, V. I. (1982). Statisticheskaya radiotekhnika. Moscow: Radio i svyaz', 624.

Downloads

Published

2018-04-03

How to Cite

Sheiko, S. (2018). Study of the method for assessing atmospheric turbulence by the envelope of sodar signals. Eastern-European Journal of Enterprise Technologies, 2(5 (92), 33–40. https://doi.org/10.15587/1729-4061.2018.127699

Issue

Section

Applied physics