Tools for forecasting and optimizing the tuning parameter of the low­speed engine for designing a ship with the kite

Authors

DOI:

https://doi.org/10.15587/1729-4061.2018.128302

Keywords:

simulation model, low-speed engine, turbocharger, matching point, kite, fuel consumption

Abstract

The developed simulation (stochastic) mathematical model for calculating fuel consumption of the main low-speed engine of a transport ship with a kite is proposed. The peculiarity of the model is the use of a number of initial probabilistic quantities such as wave height, wind speed, in the form of inverse integral distribution functions of their values. This makes it possible, using a generator of uniformly distributed pseudo-random numbers, to compute the arrays of possible values of the total fuel consumption of the main engine for the entire future operation and to determine the expected value of consumption. Such a simulation model with a pseudo-random number generator serves as a tool for comparing the fuel consumption of the alternative main engines, differing in the value of the “internal combustion engine – turbocharger” matching parameter. The minimum value of the total fuel consumption corresponds to the optimum value of the matching parameter.

Due to the simulation mathematical model, the influence of the “internal combustion engine – turbocharger” matching parameter on the total fuel consumption for the 25-year operation period of the tanker with a deadweight of 26,470 t is investigated with the help of a computer. Its propulsion is provided by the 6S50ME-C7 engine and SkySails 640 m2 kite switched if the winds are favorable. It is found that the optimum matching parameter corresponds to a point on the propeller curve of the engine with a load coordinate of 60.5 % of the rated value. This refers to a round transatlantic voyage in the Northern Atlantic, mainly in temperate latitudes, with prevailing westerlies and northeast trade winds. Fuel economy in the liner shipping at speeds of about 13.5 knots for these conditions due to the use of the kite is 21 %, from the optimization of the mentioned parameter 3.4 % and in general 24.4 %. At the price of fuel for ship diesel engines of USD 322/ton, the expected value of fuel consumption reduction for the medium-range tanker for the specified period is USD 2,029.000 or USD 81,000/year.

Author Biographies

Vladimir Shostak, Admiral Makarov National University of Shipbuilding Heroiv Ukrainy ave., 9, Mykolaiv, Ukraine, 54025

PhD

Department of ship and stationary power plants

Alena Kisarova, Admiral Makarov National University of Shipbuilding Heroiv Ukrainy ave., 9, Mykolaiv, Ukraine, 54025

Assistant

Department of ship and stationary power plants

References

  1. MAN Diesel & Turbo. MAN Diesel & Turbo. Available at: http://www.mandieselturbo.com
  2. SkySails. Turn Wind into profit. Available at: http://www.skysails.info
  3. Tancrez, M., Galindo, J., Guardiola, C., Fajardo, P., Varnier, O. (2011). Turbine adapted maps for turbocharger engine matching. Experimental Thermal and Fluid Science, 35 (1), 146–153. doi: 10.1016/j.expthermflusci.2010.07.018
  4. MARPOL Annex VI. Available at: http://www.imo.org/blast/mainframe.asp?topic_id=233
  5. Veter i volny v okeanah i moryah: spravochnye dannye. Registr SSSR (1974). Moscow: Transport, 359.
  6. Shostak, V. P., Manziuk, A. Yu. (2012). Opir dovkillia rukhu transportnoho sudna. Mykolaiv: Vydavnytstvo NUK, 181.
  7. Schnackenberg, T. (2008). SkySails – Vessel Propulsion using Kites: 20-th International HISWA Symposium on Yacht Design and Yacht Construction. Amsterdam RAI Convention Centre, 11.
  8. Dadd, G. M. (2013). Kite Dynamics for Ship Propulsion. University of Southampton, 215.
  9. Aschenbeck, S., Lenger, T., Szczesny, W., Kreutzer, R., Schlaak, M. (2009). Testergebnisse des SkySails – Systems. Schiff & Hafen: Schiffbau & Schiffstechnik, 1, 36–40.
  10. Shostak, V. P., Kisarova, A. I. (2016). Effective thrust of ship propulsion kite. Collection of Scientific Publications NUS, 4, 3–9. doi: 10.15589/jnn20160401
  11. Shostak, V. P., Kisarova, A. I. (2016). The total fuel consumption of low-speed engine ship with kite. Collection of Scientific Publications NUS, 3, 16–23. doi: 10.15589/jnn20160302
  12. Shennon, R.; Maslovskiy, E. K. (Ed.) (1978). Imitacionnoe modelirovanie sistem – iskusstvo i nauka. Moscow: Mir, 418.
  13. Shostak, V. P., Gershanik, V. I. (1998). Imitacionnoe modelirovanie sudovyh energeticheskih ustanovok. Leningrad: Sudostroenie, 256.
  14. Shostak, V. P., Hershanik, V. I., Kot, V. P., Bondarenko, M. S. (1997). Proektuvannia propulsyvnoi ustanovky suden z priamoiu peredacheiu potuzhnosti na hvynt. Mykolaiv: UDMTU, 500.
  15. PureBasic. Available at: http://www.purebasic.com/
  16. Schlaak, M., Kreutzer, R., Elsner, R. (2009). Simulating Possible Savings of the Skysails-System on International Merchant Ship Fleets. The International Journal of Maritime Engineering, 151 (a4), 25. doi: 10.3940/rina.ijme.2009.a4.161
  17. Aschenbeck, S., Elsner, R., Lenger, T., Szczesny, W., Kreutzer, R., Schlaak, M. (2009). Einsparungsportenziale in der Welthandelsflotte. Schiff & Hafen: Schiffbau & Schiffstechnik, 6, 74–81.

Downloads

Published

2018-04-10

How to Cite

Shostak, V., & Kisarova, A. (2018). Tools for forecasting and optimizing the tuning parameter of the low­speed engine for designing a ship with the kite. Eastern-European Journal of Enterprise Technologies, 2(3 (92), 13–20. https://doi.org/10.15587/1729-4061.2018.128302

Issue

Section

Control processes