Development of new technological solutions for recovery of heavy non­ferrous metals from technogenic waste of electroplating plants and sludge of water treatment systems

Authors

DOI:

https://doi.org/10.15587/1729-4061.2018.128532

Keywords:

technogenic waste, heavy non-ferrous metals, wastewater treatment, electroplating waste

Abstract

In galvanic cakes and municipal wastewater sludge, there are significant amounts of heavy non-ferrous metals, which are classified as hazard class I ecotoxicants and are currently being disposed. The existing methods of toxic waste processing do not provide for the selection and efficient recovery of valuable components. However, the cost of non-ferrous and precious metals and their industrial content in these types of technogenic waste allow justifying the payback and profitability of their industrial processing.

Based on the laboratory and large-scale laboratory experiments, flow diagrams of processing of galvanic cakes and wastewater sludge are proposed. The calculated kinetic and thermodynamic characteristics (activation energy, time of complete dissolution, Gibbs free energy value), the recovery parameters of heavy non-ferrous metals (εCu=99.5 %, εNi=99.5 %, εZn=99.9 %) indicate the possibility of industrial implementation of the given flow diagrams. Dependencies of copper recovery on temperature and leaching time are presented. The obtained results allow speaking about the kinetic limitation of the process of galvanic cake leaching (ЕCu=15.7 kJ/mol) and demonstrate the possibility of conducting the process at low temperatures (t=40 oC), which leads to lower energy consumption.

The advantage of the proposed options of processing of galvanic cakes and wastewater sludge is the presence of commercial equipment, the use of traditional hydrometallurgical processes, availability and low cost of reactants, short payback periods and anthropogenic load reduction.

Author Biographies

Mikhail Barkan, Saint-Petersburg Mining University 21 Line, 2, Saint-Petersburg, Russia, 199106

PhD, Associate Professor

Department of Geoecology

Anton Kornev, Saint-Petersburg Mining University 21 Line, 2, Saint-Petersburg, Russia, 199106

PhD, Head of Laboratory

Department of Industrial Safety

References

  1. Kofman, D. I., Vostrikov, M. M. (2009). Ekologicheskie problemy pererabotki othodov. Tverdye bytovye othody, 1, 31–32.
  2. Pashkevich, M. A., Anciferova, T. A. (2013). Ocenka riska tekhnogennogo vozdeystviya predpriyatiy toplivno-energeticheskogo kompleksa. Problemy racional'nogo prirodopol'zovaniya. Zapiski Gornogo institute, 203, 225–228.
  3. Rubanov, Yu. K., Tokach, Yu. E., Ognev, M. N. (2009). Pererabotka shlamov i stochnyh vod gal'vanicheskih proizvodstv s izvlecheniem ionov tyazhelyh metallov. Sovremennye naukoemkie tekhnologii, 3, 82–83.
  4. Zalygina, O. S., Marcul', V. N., Lihacheva, A. V. (2012). Osadki stochnyh vod gal'vanicheskogo proizvodstva kak vtorichnoe syr'e. Noveyshie dostizheniya v oblasti importozameshcheniya v himicheskoy promyshlennosti i proizvodstve stroitel'nyh materialov: materialy Mezhdu-nar. nauch.-tekhn. konf. Ch. 2. Minsk, 97–102.
  5. Kapashin, V. P., Mandych, V. G., Voronin, V. A. (2017). Sposoby likvidacii opasnyh i toksichnyh promyshlennyh othodov. Teoreticheskaya i prikladnaya ekologiya, 4, 49–53.
  6. Fechete, I., Wang, Y., Védrine, J. C. (2012). The past, present and future of heterogeneous catalysis. Catalysis Today, 189 (1), 2–27. doi: 10.1016/j.cattod.2012.04.003
  7. Czajczyńska, D., Anguilano, L., Ghazal, H., Krzyżyńska, R., Reynolds, A. J., Spencer, N., Jouhara, H. (2017). Potential of pyrolysis processes in the waste management sector. Thermal Science and Engineering Progress, 3, 171–197. doi: 10.1016/j.tsep.2017.06.003
  8. Zerlottin, M., Refosco, D., Della Zassa, M., Biasin, A., Canu, P. (2013). Self-heating of dried wastewater sludge. Waste Management, 33 (1), 129–137. doi: 10.1016/j.wasman.2012.08.014
  9. Barakat, M. A. (2011). New trends in removing heavy metals from industrial wastewater. Arabian Journal of Chemistry, 4 (4), 361–377. doi: 10.1016/j.arabjc.2010.07.019
  10. Wang, Q., Wei, W., Gong, Y., Yu, Q., Li, Q., Sun, J., Yuan, Z. (2017). Technologies for reducing sludge production in wastewater treatment plants: State of the art. Science of The Total Environment, 587-588, 510–521. doi: 10.1016/j.scitotenv.2017.02.203
  11. Pashkevich, M. A., Petrova, T. A. (2013). Utilizaciya obezvozhennyh tekhnogennyh donnyh otlozheniy vodnyh ob'ektov gornopromyshlennyh regionov. Zapiski Gornogo instituta, 206, 160–162.
  12. Appels, L., Baeyens, J., Degrève, J., Dewil, R. (2008). Principles and potential of the anaerobic digestion of waste-activated sludge. Progress in Energy and Combustion Science, 34 (6), 755–781. doi: 10.1016/j.pecs.2008.06.002
  13. Naumov, V. I., Naumov, Yu. I., Galkin, A. L., Sazont'eva, T. V. (2009). Utilizaciya shlama gal'vanicheskih proizvodstv. Gal'vanotekhnika i obrabotka poverhnosti, 17 (3), 41–47.
  14. Gulyaeva, I. S., D'yakov, M. S., Glushankova, I. S. (2015). Termicheskiy sposob obrabotki osadkov gorodskih stochnyh vod, soderzhashchih tyazhelye metally. Vodosnabzhenie i sanitarnaya tekhnika, 3, 43–48.
  15. Roy, M. M., Dutta, A., Corscadden, K., Havard, P., Dickie, L. (2011). Review of biosolids management options and co-incineration of a biosolid-derived fuel. Waste Management, 31 (11), 2228–2235. doi: 10.1016/j.wasman.2011.06.008
  16. Krasotkin, I. S., Dubrovinskiy, R. L. (1973). Gazohromatograficheskoe opredelenie udel'noy poverhnosti produktov metallurgicheskogo i obogatitel'nogo proizvodstv. Zapiski LGI, 54 (3), 161–167.
  17. Kireev, V. A. (1970). Metody prakticheskih raschetov v termodinamike himicheskih reakciy. Moscow: Himiya, 519.
  18. Krestovnikov, A. N., Vigdorovich, V. N. (1973). Himicheskaya termodinamika. Moscow: Metallurgiya, 256.
  19. Vigdorchik, E. M., Sheynin, A. B. (1971). Matematicheskoe modelirovanie nepreryvnyh processov rastvoreniya. Leningrad: Himiya, 248.

Downloads

Published

2018-04-12

How to Cite

Barkan, M., & Kornev, A. (2018). Development of new technological solutions for recovery of heavy non­ferrous metals from technogenic waste of electroplating plants and sludge of water treatment systems. Eastern-European Journal of Enterprise Technologies, 2(10 (92), 17–24. https://doi.org/10.15587/1729-4061.2018.128532