Complexification methods of interval forecast estimates in the problems on short­term prediction

Authors

DOI:

https://doi.org/10.15587/1729-4061.2018.131939

Keywords:

short-term prediction, complexification of forecast estimates, decision support, interval analysis

Abstract

We solved the problem of improvement of methodological base for a decision support system in the process of short-term prediction of indicators of organizational-technical systems by developing new, and adapting existing, methods of complexification that are capable of taking into consideration the interval uncertainty of expert forecast estimates. The relevance of this problem stems from the need to take into consideration the uncertainty of primary information, predetermined by the manifestation of NON-factors. Analysis of the prerequisites and characteristics of formalization of uncertainty of primary data in the interval form was performed, the merits of interval analysis for solving the problems of complexification of interval forecast estimates were identified. Brief information about the basic mathematical apparatus was given: interval arithmetic and interval analysis. The methods of complexification of forecast estimates were improved through the synthesis of interval extensions, obtained in accordance with the paradigm of an interval analysis. We found in the course of the study that the introduction of the analytical preference function made it possible to synthesize the model of complexification in a general way, by aggregating the classes of hybrid and selective models in a single form for the generation of consolidated predictions based on interval forecast estimates. This allows obtaining complexification predictions based on the interval forecast estimates, thereby ensuring accuracy of the consolidated short-term prediction.

Critical analysis of the proposed methods was performed and recommendations on their practical application were developed. Recommendations for parametric setting of the analytic function of preferences were stated. Using the example, the adaptive properties of the interval model of complexification were shown.

Author Biographies

Yuri Romanenkov, N. E. Zhukovsky National Aerospace University "Kharkiv Aviation Institute" Chkalovа str., 17, Kharkiv, Ukraine, 61070

Doctor of Technical Sciences, Associate Professor

Department of management

Mariia Danova, N. E. Zhukovsky National Aerospace University "Kharkiv Aviation Institute" Chkalovа str., 17, Kharkiv, Ukraine, 61070

PhD

Department of Software Engineering

Valentyna Kashcheyeva, N. E. Zhukovsky National Aerospace University "Kharkiv Aviation Institute" Chkalovа str., 17, Kharkiv, Ukraine, 61070

PhD, Associate Professor

Department of Finance

Oleg Bugaienko, N. E. Zhukovsky National Aerospace University "Kharkiv Aviation Institute" Chkalovа str., 17, Kharkiv, Ukraine, 61070

PhD

Department of Chemistry, Ecology and Expert Technologies

Maksym Volk, Kharkiv National University of Radio Electronics Nauky avе., 14, Kharkiv, Ukraine, 61166

PhD, Associate Professor

Department of Electronic Computers

Maryna Karminska-Bielobrova, National Technical University "Kharkiv Polytechnic Institute" Kyrpychova str., 2, Kharkiv, Ukraine, 61002

PhD

Department of production organization and personnel management

Olena Lobach, National Technical University "Kharkiv Polytechnic Institute" Kyrpychova str., 2, Kharkiv, Ukraine, 61002

PhD, Associate Professor

Department of Strategic Management

References

  1. Oklander, M. A., Yashkina, O. I. (2013). Kontseptsiya formuvannia systemy marketynhovykh doslidzhen innovatsiy mashynobudivnoho pidpryiemstva. Ekonomist, 11 (325), 52–56.
  2. Romanenkov, Y., Vartanian, V. (2016). Formation of prognostic software support for strategic decision-making in an organization. Eastern-European Journal of Enterprise Technologies, 2 (9 (80)), 25–34. doi: 10.15587/1729-4061.2016.66306
  3. Yashkina, O. (2013). Natsionalna systema stratehichnykh marketynhovykh doslidzhen naukovo-tekhnolohichnoho rozvytku. Ekonomist, 1, 26–29.
  4. Malitskyi, B. A., Popovych, O. S., Soloviov, V. P. (2004). Metodychni rekomendatsiyi shchodo provedennia prohnozno-analitychnoho doslidzhennia v ramkakh Derzhavnoi prohramy prohnozuvannia naukovo-tekhnolohichnoho ta innovatsiynoho rozvytku Ukrainy. Kyiv: Feniks, 52.
  5. Shostak, I. V., Danova, M. A., Romanenkov, Yu. A. (2015). Informacionnaya tekhnologiya podderzhki prinyatiya ekspertnyh resheniy v nacional'nyh Forsayt-issledovaniyah. Komunalne hospodarstvo mist, 123, 58–67.
  6. Cuhls, K. (2008). Foresight in Germany. The Handbook of Technology Foresight. Cheltenham: Edward Elgar, 131–153.
  7. Johnston, R., Sripaipan, C. (2008). Foresight in Industrialising Asia. The Handbook of Technology Foresight. Cheltenham: Edward Elgar, 333–356.
  8. Bugas, D. (2016). Modelling the expert’s preferences in decision-making under complete uncertainty. Eastern-European Journal of Enterprise Technologies, 5 (4), 12–17. doi: 10.15587/1729-4061.2016.81306
  9. Bidyuk, P. I., Gasanov, A. S., Vavilov, S. E. (2013). Analiz kachestva ocenok prognozov s ispol'zovaniem metoda kompleksirovaniya. Systemni doslidzhennia ta informatsiyni tekhnolohiyi, 4, 7–16.
  10. Buravcev, A. V. (2017). Seriy upravlencheskiy analiz. Perspektivy Nauki i Obrazovaniya, 5 (29), 74–79.
  11. Kryuchkovskiy, V. V., Usov, A. V. (2009). Teoreticheskiy analiz interval'noy neopredelennosti poleznosti resheniy. Trudy Odesskogo politekhnicheskogo universiteta, 1-2, 180–186.
  12. Bates, J. M., Granger, C. W. J. (1969). The Combination of Forecasts. Journal of the Operational Research Society, 20 (4), 451–468. doi: 10.1057/jors.1969.103
  13. Newbold, P., Granger, C. W. J. (1974). Experience with Forecasting Univariate Time Series and the Combination of Forecasts. Journal of the Royal Statistical Society. Series A (General), 137 (2), 131. doi: 10.2307/2344546
  14. Sineglazov, V. M., Chumachenko, E. I., Gorbatyuk, V. S. (2012). Metod resheniya zadachi prognozirovaniya na osnove kompleksirovaniya ocenok. Induktyvne modeliuvannia skladnykh system, 4, 214–223.
  15. Vasil'ev, A. A. (2015). Ob'edinenie prognozov ekonomicheskih pokazateley na osnove bives-ocenki s vesovoy funkciey H'yubera. Aktual'nye problemy gumanitarnyh i estestvennyh nauk, 10-4, 44–47.
  16. Molev, M. D., Zanina, I. A., Stuzhenko, N. I. (2013). Sintez prognoznoy informacii v praktike ocenki ekologo-ekonomicheskogo razvitiya regiona. Inzhenerniy vestnik Dona, 4, 59.
  17. Romanenkov, Yu. A., Vartanyan, V. M., Revenko, D. S. (2014). Kompleksirovanie prognoznyh ocenok v sisteme monitoringa pokazateley sostoyaniya biznes-processa. Systemy upravlinnia, navihatsiyi ta zviazku, 2, 94–101.
  18. Sternin, M. Yu., Shepelev, G. I. (2009). Sravnenie poliinterval'nyh ocenok v metode OIO. Intelligent Support of Decision Making. International book series «Information science & computing», 10, 83–88.
  19. Shepelev, G. I., Sternin, M. Yu. (2014). Ob adekvatnosti tochechnyh kriteriev zadacham ocenki i sravneniya interval'nyh al'ternativ. Iskusstvenniy intellekt i prinyatie resheniy, 2, 78–88.
  20. Levin, V. I. (2004). Uporyadochenie intervalov i zadachi optimizacii s interval'nymi parametrami. Kibernetika i sistem. analiz, 3, 14–24.
  21. Batyrshin, I. Z. et. al.; Yarushkina, N. G. (Ed.) (2007). Nechetkie gibridnye sistemy: teoriya i praktika. Moscow: Fizmatlit, 207.
  22. Kamolov, E. R. (2017). Osnovnye vidy i tipy neopredelennosti informacii, harakternye dlya slozhnyh biotekhnologicheskih system. Molodoy ucheniy, 27, 36–39.
  23. Shishin, V. V. (2012). Metody analiza eksperimental'nyh dannyh s razlichnymi vidami neopredelennosti. Sovremennye problemy nauki i obrazovaniya, 6, 11.
  24. Revenko, D. S., Vartanyan, V. M. (2009). Razrabotka metoda formirovaniya interval'nyh dannyh na osnove ekspertnoy informacii. Ekonomika ta upravlinnia pidpryiemstvamy mashynobudivnoi haluzi, 1, 24–30.
  25. Bardachev, Yu. N., Kryuchkovskiy, V. V., Malomuzh, T. V. (2010). Metodologicheskaya predpochtitel'nost' interval'nyh ekspertnyh ocenok pri prinyatii resheniy v usloviyah neopredelennosti. Visnyk Kharkivskoho natsionalnoho universytetu imeni V. N. Karazina. Seriya: Matematychne modeliuvannia. Informatsiyni tekhnolohiyi. Avtomatyzovani systemy upravlinnia, 890, 18–28.
  26. Podruzhko, A. A., Podruzhko, A. S., Kiricev, P. N. (2009). Interval'nye metody resheniya zadach kalibrovki i klassifikacii. Trudy Instituta sistemnogo analiza Rossiyskoy Akademii nauk. Dinamika neodnorodnyh system, 44, 173–186.
  27. Voshchinin, A. P. (2002). Interval'niy analiz dannyh: razvitie i perspektivy. Zavodskaya Laboratoriya, 68 (1), 118–126.
  28. Kochkarov, R. A. (2015). Interval'nye zadachi na predfraktal'nyh grafah. Novye informacionnye tekhnologii v avtomatizirovannyh sistemah, 18, 255–264.
  29. Orlov, A. I. (2013). Osnovnye idei statistiki interval'nyh dannyh. Nauchnyy zhurnal KubGAU, 94, 55–70.
  30. Levin, V. I. (2002). Sravnenie intervalov i optimizaciya v usloviyah neopredelennosti. Vestnik Tambovskogo universiteta. Seriya: Estestvennye i tekhnicheskie nauki, 3, 383–389.
  31. Vartanyan, V. M., Shah, L. G., Romanenkov, Yu. A. (2003). Postroenie i analiz interval'nyh nestatisticheskih modeley. Tekhnologicheskie sistemy, 3 (19), 19–24.
  32. Vartanyan, V. M., Romanenkov, Yu. A., Kashcheeva, V. Yu., Revenko, D. S. (2009). Parametricheskiy sintez modeli eksponencial'nogo sglazhivaniya dlya statisticheskih ryadov interval'nyh dannyh. Otkrytye informacionnye i komp'yuternye integrirovannye tekhnologii, 44, 232–240.
  33. Lai, Q., Liu, J., Luo, Y., Ma, M. (2017). A Hybrid Short-Term Forecasting Model of Passenger Flow on High-Speed Rail considering the Impact of Train Service Frequency. Mathematical Problems in Engineering, 2017, 1–9. doi: 10.1155/2017/1828102

Downloads

Published

2018-05-23

How to Cite

Romanenkov, Y., Danova, M., Kashcheyeva, V., Bugaienko, O., Volk, M., Karminska-Bielobrova, M., & Lobach, O. (2018). Complexification methods of interval forecast estimates in the problems on short­term prediction. Eastern-European Journal of Enterprise Technologies, 3(3 (93), 50–58. https://doi.org/10.15587/1729-4061.2018.131939

Issue

Section

Control processes