Modeling an intelligent system for the estimation of technical state of construction structures

Authors

DOI:

https://doi.org/10.15587/1729-4061.2018.132587

Keywords:

knowledge base, intelligent system, fuzzy implication, estimation of technical state, construction design

Abstract

The study investigates issues related to modeling and development of intelligent systems for estimation of the technical state of building constructions. The study considers mathematical bases of modeling of an estimation system based on a fuzzy knowledge base and one of modifications of Takagi-Sugeno-Kang fuzzy network. It describes the structure of a network in detail and substantiates a choice of the algorithm for its learning. The main criteria for choosing this modification were its ability to solve a classification problem under conditions of uncertainty and the ability to set rules by the function of inputs. We adapted the structure of a network to the task of estimation of the technical state of real building constructions. We showed that it is advisable to learn a network with a use if an algorithm with a trainer. In this case, we suggested to use a direct method of random search, which is adapted to the solution of this problem, to minimize an error. In order to identify the state of structures, we suggested to use membership measures obtained by the clustering method. Implementation and introduction of neural network technologies in solution of tasks of estimation of the technical state of building constructions expands and improves capabilities of intelligent systems, reduces risks of making incorrect decisions by increasing reliability and speed of modeling.

Author Biographies

Svitlana Terenchuk, Kyiv National University of Construction and Architecture Povіtroflotsky ave., 31, Kyiv, Ukraine, 03037

PhD, Associate Professor

Department of Architectural Structures

Anatolii Pashko, Taras Shevchenko National University of Kyiv Volodymyrska str., 60, Kyiv, Ukraine, 01033

Doctor of Physical and Mathematical Science

Research Sector of Problems of System Analysis

Bohdan Yeremenko, Kyiv National University of Construction and Architecture Povіtroflotsky ave., 31, Kyiv, Ukraine, 03037

PhD

Department of Information Technology Design and Applied Mathematics

Serhii Kartavykh, Kyiv National University of Construction and Architecture Povіtroflotsky ave., 31, Kyiv, Ukraine, 03037

Postgraduate student

Department of Information Technology Design and Applied Mathematics

Nina Ershovа, Prydniprovs’ka State Academy of Civil Engineering and Architecture Chernyshevskoho str., 24a, Dnipro, Ukraine, 49600

Doctor of Technical Sciences, Professor

Department of Applied Mathematics and Information Technologies

References

  1. Abrukov, V. S., Abrukov, S. V., Smirnov, A. V., Karlovich, E. V. (2014). Baza znaniy: eksperiment, intellektual'nyy analiz dannyh, iskusstvennye neyronnye seti. Sb. trudov II Vserossiyskoy nauchnoy konferencii «Nanostrukturirovannye materialy i preobrazovatel'nye ustroystva dlya solnechnoy energetiki». doi: 10.13140/2.1.4926.2400
  2. Blum, C., Puchinger, J., Raidl, G. R., Roli, A. (2011). Hybrid metaheuristics in combinatorial optimization: A survey. Applied Soft Computing, 11 (6), 4135–4151. doi: 10.1016/j.asoc.2011.02.032
  3. Zaitseva, E., Levashenko, V., Kostolny, J. (2015). Importance analysis based on logical differential calculus and Binary Decision Diagram. Reliability Engineering & System Safety, 138, 135–144. doi: 10.1016/j.ress.2015.01.009
  4. Sarycheva, L. V. (2008). Objective Cluster Analysis of Data Based on GMDH. Journal of Automation and Information Sciences, 40 (4), 28–48. doi: 10.1615/jautomatinfscien.v40.i4.30
  5. Potočnik, P., Berlec, T., Sluga, A., Govekar, E. (2014). Hybrid Self-Organization Based Facility Layout Planning. Strojniški Vestnik – Journal of Mechanical Engineering, 60 (12), 789–796. doi: 10.5545/sv-jme.2014.1748
  6. Sánchez, M. S., Swierenga, H., Sarabia, L. A., Derks, E., Buydens, L. (1996). Performance of multi layer feedforward and radial base function neural networks in classification and modelling. Chemometrics and Intelligent Laboratory Systems, 33 (2), 101–119. doi: 10.1016/0169-7439(95)00089-5
  7. Yeremenko, V. S., Pereidenko, A. V., Monchenko, O. V. (2012). Zastosuvannia neiromerezhevykh tekhnolohiyi u systemakh neruinivnoho kontroliu. Tekhnicheskaya diagnostika i nerazrushayushchiy kontrol', 1, 35–41.
  8. Osowski, S. (2000). Sieci neuronowe do przetwarzania informacji. Warszawa, 342.
  9. Terenchuk, S. A., Yeremenko, B. M., Pashko, A. O. (2016). Otsiniuvannia tekhnichnoho stanu budivelnykh konstruktsiy na osnovi nechitkoho vyvedennia. Budivelne vyrobnytstvo, 61, 23–31.
  10. Terenchuk, S., Yeremenko, B., Sorotuyk, T. (2016). Implementation of intelligent information technology for the assessment of technical condition of building structures in the process of diagnosis. Eastern-European Journal of Enterprise Technologies, 5 (3 (83)), 30–39. doi: 10.15587/1729-4061.2016.80782
  11. Terenchuk, S., Yeremenko, B., Kartavykh, S., Nasikovskyi, O. (2018). Application of fuzzy mathematics methods to processing geometric parameters of degradation of building structures. EUREKA: Physics and Engineering, 1, 56–62. doi: 10.21303/2461-4262.2018.00554
  12. Yeremenko, B. M., Terenchuk, S. A., Kartavykh, S. M., Nasikovskyi, O. V. (2017). Zastosuvannia ekspertnykh znan dlia formuvannia bazy znan systemy otsiniuvannia tekhnichnoho stanu budivelnykh konstruktsiy. Nauka ta budivnytstvo, 4, 63–69.
  13. Hammah, R. E., Curran, J. H. (1998). Fuzzy cluster algorithm for the automatic identification of joint sets. International Journal of Rock Mechanics and Mining Sciences, 35 (7), 889–905. doi: 10.1016/s0148-9062(98)00011-4
  14. Tanaka, K., Yoshida, H., Ohtake, H., Wang, H. O. (2009). A Sum-of-Squares Approach to Modeling and Control of Nonlinear Dynamical Systems With Polynomial Fuzzy Systems. IEEE Transactions on Fuzzy Systems, 17 (4), 911–922. doi: 10.1109/tfuzz.2008.924341

Downloads

Published

2018-05-30

How to Cite

Terenchuk, S., Pashko, A., Yeremenko, B., Kartavykh, S., & Ershovа N. (2018). Modeling an intelligent system for the estimation of technical state of construction structures. Eastern-European Journal of Enterprise Technologies, 3(2 (93), 47–53. https://doi.org/10.15587/1729-4061.2018.132587