Mechanoactivation of Portland cement in the technology of manufacturing the self­compacting concrete

Authors

DOI:

https://doi.org/10.15587/1729-4061.2018.133235

Keywords:

mechanoactivation, self-compacting concrete, effective viscosity, superplasticizer, polycarboxylate, microsilica, polypropylene fibers

Abstract

This paper examines the intensive separation technology for producing a self-compacting concrete (SCC). We substantiate the proposed technology of SCC production through the effective control over viscosity of cement-water compositions, which to a large extent ensure the mobility of concrete mixes. A separate preparation of cement-water compositions at a high-speed mixer with its subsequent mixing with fillers in a regular concrete mixer profoundly changes the priorities in the production technology of a concrete mix. We substantiate the idea on that the use of the separation technology could optimize the modes of high-speed mixing in order to separately prepare the highly concentrated cement-containing suspensions under conditions of intensive hydrodynamic impacts on them. Particular attention is paid to studying the effect of content of the superplasticizer of polycarboxylate type Relaxol-Super PC, microsilica, and polypropylene fibers, on effective viscosity of the cement-containing suspension. Comparative analysis of influence of the original formulation factors on its value is described. It was found that the mechanoactivation of a cement-containing suspension in the presence of the admixture Relaxol-Super PC leads to the complete destruction of its original structure, which is necessary for the uniform distribution of microsilica and polypropylene fibers in the volume.

We describe the features of grain composition, rendering exclusive fluidity to the concrete mix, as well as the possibility of laying it in the mold without vibration. The intensive separation technology makes it possible to obtain SCC with the F4, F5 grades for fluidity, and compressive strength at the age of 28 days not less than 55 MPa.

We have scientifically substantiated and experimentally confirmed the effectiveness of mechanical activation for the separation technology of self-compacting concrete mixes and the high-strength concretes based on them.

Author Biographies

Ivan Barabash, Odessa State Academy of Civil Engineering and Architecture Didrikhsona str., 4, Odessa, Ukraine, 65029

Doctor of Technical Sciences, Professor

Department of Urban Construction and Economy

Darya Harashchenko, Odessa State Academy of Civil Engineering and Architecture Didrikhsona str., 4, Odessa, Ukraine, 65029

Postgraduate student

Department of Urban Construction and Economy

References

  1. Bazhenov, Yu. M. (2003). Tekhnologiya betona. Moscow: Izd-vo AVS, 500.
  2. Aleksandrov, Ya. A. (2011). Vybor syr'evyh materialov dlya proizvodstva samouplotnyayushchihsya betonov. Tekhnologiya betonov, 3, 18–19.
  3. Okamura, H., Ouchi, M. (2003). Self-Compacting Concrete. Journal of Advanced Concrete Technology, 1 (1), 5–15. doi: 10.3151/jact.1.5
  4. Zaychenko, N. M., Serdyuk, A. I. (2013). Betony s vysokim soderzhaniem zolya dlya massivnyh zhelezobetonnyh konstrukciy. Visnyk DonNABA. Suchasni budivelni materialy, 1 (99), 137–144.
  5. Berdov, G. I., Il'ina, L. V. (2010). Aktivaciya cementov deystviem mineral'nyh dobavok. Mezhdunarodniy zhurnal prikladnyh i fundamental'nyh issledovaniy, 9, 55–58.
  6. Kamal, M. M., Safan, M. A., Etman, Z. A., Kasem, B. M. (2014). Mechanical properties of self-compacted fiber concrete mixes. HBRC Journal, 10 (1), 25–34. doi: 10.1016/j.hbrcj.2013.05.012
  7. Barabash, I. V., Barabash, T. I., Shcherbina, O. S. (2015). Effektivnaya vyazkost' aktivirovannyh cementnyh suspenziy s dobavkoy domennogo shlaka. Mistobuduvannia ta terytorialne planuvannia, 546–550.
  8. Ibragimov, R. A., Pimenov, S. I., Izotov, V. S. (2015). Vliyanie mekhanohimicheskoy aktivacii vyazhushchego na svoystvo melkozernistogo betona. Magazine of Civil Ingineering, 2, 63–69.
  9. Vyrovoy, V. N., Barabash, I. V. et. al. (2014). Mekhanoaktivaciya v tekhnologii betona. Odessa: OGASA, 148.
  10. Li, F. M. (1961). Himiya cementa i betona. Moscow: Stroyizdat, 645.
  11. Ahverdov, I. N. (1981). Osnovy fiziki betona. Moscow: Stroyizdat, 464.
  12. Batrakov, V. G. (1990). Modificirovannye betony. Moscow: Stroyizdat, 440.
  13. Rebinder, P. A. (1979). Poverhnostnye yavleniya v dispersnyh sistemah. Moscow: Nauka, Izbrannye trudy, 384.
  14. Rebinder, P. A. (1958). Fiziko-mekhanicheskaya mekhanika. Moscow, 64.
  15. Ur'ev, N. B. (1980). Vysokokoncentirovannye dispersnye sistemy. Moscow: Himiya, 320.
  16. Ur'ev, N. B. (1998). Dinamika strukturirovannyh dispersnyh system. Kolloidniy zhurnal, 60 (5), 662–683.
  17. Ur'ev, N. B. (1988). Fiziko-mekhanicheskie osnovy tekhnologii dispersnyh sistem i materialov. Moscow: Himiya, 256.
  18. Ur'ev, N. B., Dubinin, I. S. (1980). Kolloidnye cementnye rastvory. Leningrad: Stroyizdat, 192.
  19. Butt, Yu. M., Sychev, M. M., Timashev, V. V. (1980). Himicheskaya tekhnologiya vyzhushchih materialov. Moscow: Vysshaya shkola, 472.
  20. Nikiforov, A. P. (2002). Dobavki dlya betona. Sostoyanie i perspektivy. Budivelni materialy. Suchasni problemi betonu ta yoho tekhnolohiya, 186–190.
  21. Fayner, M. Sh. (2001). Novye zakonomernosti v betonovedenii i ih pravticheskoe primenenie. Kyiv: Naukova dumka, 480.
  22. Barabash, I. V., Vyrovoy, V. N. (2000). Mekhanizmy organizacii struktury mekhanoaktivirovannyh grubodispersnyh system. Zbirnyk «Kompozytsiyni materialy dlia budivnytstva. Visnyk – DDABA, 2 (22), 12–15.

Downloads

Published

2018-06-08

How to Cite

Barabash, I., & Harashchenko, D. (2018). Mechanoactivation of Portland cement in the technology of manufacturing the self­compacting concrete. Eastern-European Journal of Enterprise Technologies, 3(6 (93), 12–17. https://doi.org/10.15587/1729-4061.2018.133235

Issue

Section

Technology organic and inorganic substances