Research into structure formation and properties of the fiber­reinforced aerated concrete obtained by the non­autoclaved hardening

Authors

DOI:

https://doi.org/10.15587/1729-4061.2018.133594

Keywords:

non-autoclaved aerated concrete, kinetics of swelling, density, strength, polypropylene fiber

Abstract

We have investigated the influence of the ratio cement:fly-ash and the temperature of mixing water on the properties of aerated concrete mixes and aerated concrete. It was established that the rational cement-fly ash ratio is 1:1; the mixing water temperature is 40 °C. Experimental research confirmed that the introduction of waste from salt processing and metakaolin to the formulation of binding compositions leads to the formation, rather than the metastable hexagonal calcium hydro-aluminates, of the stable compounds in the structure of partitions between pores of the hydrocalumite and hydrocarboaluminate type. That allowed the targeted structure formation of partitions between pores of the non-autoclaved aerated concrete, which improves the density of partitions and the strength of aerated concrete. It is shown that the introduction of polypropylene fibers to composition of aerated concrete does not affect the kinetics of swelling of the aerated concrete array. However, the introduction of polypropylene fibers improves the strength of aerated concrete based on the modified binding composition containing metakaolin by 47 %, the modified binding composition containing carbonate-containing waste ‒ by 32 %. For the aerated concrete of the В1.5–В2 class of strength, at a density within 615‒625 kg/m3, the estimated coefficient of thermal conductivity is 0.16 W/(m∙K), which makes it possible to reduce heat losses through external enclosures.

Thus, there is reason to assert the possibility of the targeted control over the processes of forming a strong structure of partitions between pores using the modified binding compositions containing supplementary cementitious materials. The application of polypropylene fibers enables the reinforcement of aerated -concrete array, forming a strong structural frame of partitions between pores, and ensuring greater strength of the non-autoclaved aerated concrete.

Author Biographies

Oksana Poznyak, Lviv Polytechnic National University S. Bandery str., 12, Lviv, Ukraine, 79013

PhD, Associate Professor

Department of Building Production

Myroslav Sanytsky, Lviv Polytechnic National University S. Bandery str., 12, Lviv, Ukraine, 79013

Doctor of Technical Sciences, Professor, Head of Department

Department of Building Production

Igor Zavadsky, Lviv Polytechnic National University S. Bandery str., 12, Lviv, Ukraine, 79013

Postgraduate student

Department of Building Production

Serhii Braichenko, Lviv Polytechnic National University S. Bandery str., 12, Lviv, Ukraine, 79013

PhD

Department of Building Production

Andriy Melnyk, Ferozit LTD Shevchenka str., 317, Lviv, Ukraine, 79069

PhD

References

  1. Poroshenko zatverdyv ratyfikatsiyu Paryzkoi klimatychnoi uhody (2016). Dzerkalo tyzhnia. Ukraina. 2016. Available at: https://dt.ua/UKRAINE/poroshenko-zatverdiv-ratifikaciyu-parizkoyi-klimatichnoyi-ugodi-215094_.html
  2. Sanytskyi, M. A., Pozniak, O. R., Marushchak, U. D. (2013). Enerhozberihaiuchi tekhnolohiyi v budivnytstvi. Lviv, 236.
  3. Kearsley, E. P., Wainwright, P. J. (2001). Porosity and permeability of foamed concrete. Cement and Concrete Research, 31 (5), 805–812. doi: 10.1016/s0008-8846(01)00490-2
  4. Sanytsky, M., Pozniak, O., Roussyn, B., Szymanek, A., Szymanska, J. (2011). Concrete based on modified cementitious system with fine ground mineral additives. Non- traditional cement & concrete, Proceedings of the 4th International Conference, 85–92.
  5. Shishkina, A. (2016). Study of the effect of micelle-forming surfactants on the strength of cellular reactive powder concrete. Eastern-European Journal of Enterprise Technologies, 2 (6 (80)), 66–78. doi: 10.15587/1729-4061.2016.63706
  6. Prabha, P., Bhuvaneshwari, B., Palani, G. (2015). Nano Modified Foam Concrete. The Masterbuilder, 168–174.
  7. Marushchak, U., Sanytsky, M., Mazurak, T., Olevych, Y. (2016). Research of nanomodified portland cement compositions with high early age strength. Eastern-European Journal of Enterprise Technologies, 6 (6 (84)), 50–57. doi: 10.15587/1729-4061.2016.84175
  8. Karakurt, C., Kurama, H., Topçu, İ. B. (2010). Utilization of natural zeolite in aerated concrete production. Cement and Concrete Composites, 32 (1), 1–8. doi: 10.1016/j.cemconcomp.2009.10.002
  9. Wang, C., Lin, X., Wang, D., He, M., Zhang, S. (2018). Utilization of oil-based drilling cuttings pyrolysis residues of shale gas for the preparation of non-autoclaved aerated concrete. Construction and Building Materials, 162, 359–368. doi: 10.1016/j.conbuildmat.2017.11.151
  10. Namsone, E., Šahmenko, G., Korjakins, A. (2017). Durability Properties of High Performance Foamed Concrete. Procedia Engineering, 172, 760–767. doi: 10.1016/j.proeng.2017.02.120
  11. Belov,V., Rushdi, A. (2015). Razrabotka optimalnykh sostavov neavtoklavnogo gazobetona. Сement i yego primeneniye, 6, 92–97.
  12. Aliabdo, A. A., Abd-Elmoaty, A.-E. M., Hassan, H. H. (2014). Utilization of crushed clay brick in cellular concrete production. Alexandria Engineering Journal, 53 (1), 119–130. doi: 10.1016/j.aej.2013.11.005
  13. Mirza, W. H., Al-Noury, S. I. (1986). Utilisation of Saudi sands for aerated concrete production. International Journal of Cement Composites and Lightweight Concrete, 8 (2), 81–85. doi: 10.1016/0262-5075(86)90002-3
  14. Esmaily, H., Nuranian, H. (2012). Non-autoclaved high strength cellular concrete from alkali activated slag. Construction and Building Materials, 26 (1), 200–206. doi: 10.1016/j.conbuildmat.2011.06.010
  15. Drochytka, R., Helanová, E. (2015). Development of Microstructure of the Fly Ash Aerated Concrete in time. Procedia Engineering, 108, 624–631. doi: 10.1016/j.proeng.2015.06.189
  16. Kuryatnikov, Yu. Yu., Ali, R. A., Vinogradova, V. A., Saharova, O. V. Optimizaciya struktury svyazuyushchey matricy gazobetona s ispol'zovaniem karbonatnogo napolnitelya. Stroitel'stvo i stroitel'nye tekhnologii. Available at: http://eprints.tstu.tver.ru/135/1/2.pdf
  17. Yang, L., Yan, Y., Hu, Z. (2013). Utilization of phosphogypsum for the preparation of non-autoclaved aerated concrete. Construction and Building Materials, 44, 600–606. doi: 10.1016/j.conbuildmat.2013.03.070
  18. Hezhev, T. A., Puharenko, Yu. V., Hashukaev, M. N. (2003). Yacheistye fibrobetony na osnove vulkanicheskih gornyh porod. Izvestiya vysshih uchebnyh zavedeniy. Severo-Kavkazskiy region. Tekhnicheskie nauki, 3, 37–39.
  19. Sokolova, S. N., Mitina, N. (2009). A Untersuchungen zum Einfluss von Dispersfuellern auf die bautechnischen Eigenschaften von Porenbeton. Ibausil, 1193–1198.
  20. Abdul Rahim, N. H., Mohamad, N., Abdul Samad, A. A., Goh, W. I., Jamaluddin, N. (2017). Flexural Behaviour of Precast Aerated Concrete Panel (PACP) with Added Fibrous Material: An Overview. MATEC Web of Conferences, 103, 02005. doi: 10.1051/matecconf/201710302005
  21. Fomicheva, G. N. (2005). Matematicheskoe opisanie processa polucheniya gazobetona na al'bitofirovom napolnitele. Novye stroitel'nye tekhnologii, 196–199.
  22. Martynov, V. I., Vyrovoy, V. N., Orlov, D. A., Vetoh, A. M. (2006). Strukturoobrazovanie i svoystva yacheistyh betonov. Resursoekonomni materialy, konstruktsiyi, budivli ta sporudy, 14, 90–96.

Downloads

Published

2018-06-13

How to Cite

Poznyak, O., Sanytsky, M., Zavadsky, I., Braichenko, S., & Melnyk, A. (2018). Research into structure formation and properties of the fiber­reinforced aerated concrete obtained by the non­autoclaved hardening. Eastern-European Journal of Enterprise Technologies, 3(6 (93), 39–46. https://doi.org/10.15587/1729-4061.2018.133594

Issue

Section

Technology organic and inorganic substances