Theoretical study into efficiency of the improved longitudinal profile of frogs at railroad switches

Authors

DOI:

https://doi.org/10.15587/1729-4061.2018.139502

Keywords:

frog, railroad switch, railroad rolling stock, longitudinal profile, dynamic forces, stresses

Abstract

We have developed a comprehensive method to prolong the time of operation of frogs at railroad switches, based on the consideration of a longitudinal profile of the frog, the magnitude of dynamic forces and normal stresses.

We have improved a longitudinal profile of the frog, brand 1/11, project 1740, by the method of surfacing under field operation conditions. The slopes of a trajectory after the passage of an average statistical wheel over the proposed profile amount to 3.7 ‰ instead of 10 ‰ for a standard profile of the frog.

It was established that increasing a load on the frog to 60 % at the expense of a deflection under the frog beam leads to the accelerated disarrangement of the frog, as a result of fatigue defects at the rolling surface, while the cost of frog operation in this case increases by five times.

We modeled a dynamic interaction between the rolling stock and a standard, as well as the proposed, longitudinal profiles of frogs. Calculation of dynamic processes of the nonlinear interaction between the rolling stock and a standard profile of the frog and the profile restored by surfacing, showed that the magnitude of forces for the proposed frog at the motion speed of 150 km/h is 50 % lower compared with a standard longitudinal profile. At linear simulation of dynamic additions of forces, the magnitude of forces decreases for the proposed profile to 30 %.

We employed a graphical method to calculate the magnitudes of axial inertia moments and the moments of resistance in the characteristic cross sections of the frog. The estimation of the stressed-strained state of the frog was performed using equations of five moments for a continuous beam on elastic point supports. It was established that stresses at the static calculation of the frog are low and are much less than the maximum permissible magnitude of stresses for a given grade of steel. Therefore, we can argue that the frog works under a load at the expense of existing reserve of strength.

Author Biographies

Vitalii Kovalchuk, Lviv branch of Dnipropetrovsk National University of Railway Transport named after Academician V. Lazaryan I. Blazhkevych str., 12a, Lviv, Ukraine, 79052

PhD

Department of rolling stock and track

Mykola Sysyn, Dresden University of Technology Hettnerstraße, 3/353, Dresden, Germany, D-01069

PhD, Associate Professor

Department of planning and design of railway infrastructure

Julia Sobolevska, Lviv branch of Dnipropetrovsk National University of Railway Transport named after Academician V. Lazaryan I. Blazhkevych str., 12a, Lviv, Ukraine, 79052

PhD, Associate Professor

Department of fundamental disciplines

Olga Nabochenko, Lviv branch of Dnipropetrovsk National University of Railway Transport named after Academician V. Lazaryan I. Blazhkevych str., 12a, Lviv, Ukraine, 79052

PhD

Department of rolling stock and track

Bogdan Parneta, Lviv Polytechnic National University S. Bandery str., 12, Lviv, Ukraine, 79013

PhD, Associate Professor

Department of construction industry

Andriy Pentsak, Lviv Polytechnic National University S. Bandery str., 12, Lviv, Ukraine, 79013

PhD, Associate Professor

Department of construction industry

References

  1. Rybkin, V. V., Panchenko, P. V., Tokariev, S. O. (2012). Istorychnyi analiz teoretychnykh ta eksperymentalnykh doslidzhen dynamiky koliyi, strilochnykh perevodiv ta rukhomoho skladu. Zbirnyk naukovykh prats Donetskoho in-tu zalizn. tr-tu, 32, 277–288.
  2. Danilenko, E. I., Kutah, A. P., Taranenko, S. D. (2001). Strelochnye perevody zheleznyh dorogo Ukrainy. Kyiv: Kievskiy institut zheleznodorozhnogo transporta, 296.
  3. Danilenko, E. I., Orlovskyi, A. M., Kurhan, M. B., Yakovliev, V. O. et. al. (2012). Instruktsiya z ulashtuvannia ta utrymannia koliyi zaliznyts Ukrainy. Kyiv: «NVP Polihrafservis», 395.
  4. Orlovskyi, A. M., Kalenyk, K. L., Kovalchuk, V. V. (2012). Doslidzhennia pozdovzhnoho profiliu zhorstkykh khrestovyn na zalizobetonnykh brusakh. Visnyk Dnipropetr. nats. un-tu zal. transp. im. ak. V. Lazariana, 41, 130–135.
  5. Gerber, U., Sysyn, M. P., Kowaltschuk, W. W., Nabotschenko, O. S. (2017). Geometrische Optimierung von Weichenherzstücken. EIK Eisenbahningieur kompendium. Euralpres. Deutschland, Hamburg, 229–240.
  6. Esveld, C. (2001). Modern railway track. MRT-Production, 653.
  7. Kovalchuk, V., Bal, O., Sysyn, M. (2017). Development of railway switch frog diagnostics system. 6th International Scientific Conference organized by Railway Research Institute and Faculty of Transport of Warsaw University of Technology. Warsaw.
  8. Gerber, U., Fengler, W., Zoll, A. (2016). Das Messsystem ESAH-M. In: EIK – Eisenbahningenieurkalender Jahrbuch für Schienenverkehr & Technik, 49–62.
  9. Danilenko, E. I. (2010). Zaliznychna koliya. Ulashtuvannia, proektuvannia i rozrakhunky, vzaiemodiya z rukhomym skladom. Vol. 1. Kyiv: Inpres, 528.
  10. Danilenko, E. I., Karpov, M. I., Boiko, V. D. et. al. (2007). Harantiyni stroky sluzhby ta umovy zabezpechennia harantiynoi ekspluatatsiyi metalevykh elementiv strilochnykh perevodiv. Kyiv: Transport Ukrainy, 56.
  11. Polozhennia pro normatyvni stroky sluzhby strilochnykh perevodiv u riznykh ekspluatatsiynykh umovakh (2003). Kyiv: Transport Ukrainy, 30.
  12. Concluding Technical Report. INNOTRACK, Innovative Track Systems. Available at: http://www.charmec.chalmers.se/innotrack/
  13. Kovalchuk, V., Bolzhelarskyi, Y., Parneta, B., Pentsak, A., Petrenko, O., Mudryy, I. (2017). Evaluation of the stressed-strained state of crossings of the 1/11 type turnouts by the finite element method. Eastern-European Journal of Enterprise Technologies, 4 (7 (88)), 10–16. doi: https://doi.org/10.15587/1729-4061.2017.107024
  14. TU U 27.3-26524137-1340:2005. Khrestovyny zaliznychni staroprydatni vidremontovani v koliyi naplavkoiu. Derzhavna administratsiya zaliznychnoho transportu Ukrainy (2006). Kyiv: VD «Manufaktura», 40.
  15. Nicklisch, D., Nielsen, J. C. O., Ekh, M., Johansson, A., Pålsson, B., Zoll, A., Reinecke, J. (2009). Simulation of wheel–rail contact and subsequent material degradation in switches & crossings. Proceedings of the 21st International Symposium on Dynamics of Vehicles on Roads and Tracks (IAVSD). Stockholm, Sweden.
  16. Kovalchuk, V., Markul, R., Bal, O., Мilyanych, A., Pentsak, A., Parneta, B., Gajda, A. (2017). The study of strength of corrugated metal structures of railroad tracks. Eastern-European Journal of Enterprise Technologies, 2 (7 (86)), 18–25. doi: https://doi.org/10.15587/1729-4061.2017.96549
  17. Salajka, V., Smolka, M., Kala, J., Plášek, O. (2017). Dynamical response of railway switches and crossings. MATEC Web of Conferences, 107, 00018. doi: https://doi.org/10.1051/matecconf/201710700018
  18. Kovalchuk, V., Kovalchuk, Y., Sysyn, M., Stankevych, V., Petrenko, O. (2018). Estimation of carrying capacity of metallic corrugated structures of the type Multiplate MP 150 during interaction with backfill soil. Eastern-European Journal of Enterprise Technologies, 1 (1 (91)), 18–26. doi: https://doi.org/10.15587/1729-4061.2018.123002
  19. Kassa, E. (2007). Dynamic train-turnout interaction: mathematical modelling, numerical simulation and field testing. Chalmers University of Technology, Göteborg.
  20. Kovalchuk, V., Markul, R., Pentsak, A., Parneta, B., Gayda, O., Braichenko, S. (2017). Study of the stress-strain state in defective railway reinforced-concrete pipes restored with corrugated metal structures. Eastern-European Journal of Enterprise Technologies, 5 (1 (89)), 37–44. doi: https://doi.org/10.15587/1729-4061.2017.109611
  21. Myamlin, S. V. (2002). Modelirovanie dinamiki rel'sovyh ekipazhey. Dnepropetrovsk: Novaya ideologiya, 240.
  22. Alad'ev, V. Z., Bogdyavichyus, M. A. (2001). MAPLE 6: Reshenie matematicheskih, statisticheskih i fiziko-tekhnicheskih zadach. Moscow: Laboratoriya Bazovyh Znaniy, 824.
  23. Met'yuz, D. G., Fink, K. D. (2001). Chislennye metody. Ispol'zovanie MATLAB. Moscow: Izdatel'skiy dom «Vil'yams», 720.
  24. Gule, Zh. (1985). Soprotivlenie materialov. Moscow: Shkola, 193.

Downloads

Published

2018-08-15

How to Cite

Kovalchuk, V., Sysyn, M., Sobolevska, J., Nabochenko, O., Parneta, B., & Pentsak, A. (2018). Theoretical study into efficiency of the improved longitudinal profile of frogs at railroad switches. Eastern-European Journal of Enterprise Technologies, 4(1 (94), 27–36. https://doi.org/10.15587/1729-4061.2018.139502

Issue

Section

Engineering technological systems