Development of the analytical method of the general mathieu equation solution

Authors

DOI:

https://doi.org/10.15587/1729-4061.2018.140634

Keywords:

general Mathieu equation, analytical method, fundamental functions, characteristic exponent

Abstract

An analytical method for solving the general Mathieu differential equation in the initial form is proposed. The method is based on the corresponding exact solution, which is found for arbitrary numerical parameters of the initial equation a and q. In turn, the exact solution is expressed through the fundamental functions, which are represented by series in powers of the parameters a and q with variable coefficients.

Along with Mathieu equation, the system of equivalent differential equations is also considered. It is shown that the Wronskian matrix, which is formed of the fundamental functions of the equation, is the transition matrix of the system. Thus, it is proved that the fundamental functions of the Mathieu equation satisfy the given conditions at the zero point.

In order to solve the problem of numerical realization of the exact formulas found, the fundamental functions are represented by power series. To calculate the coefficients of the power series, the corresponding recurrent relations are derived.

As a result of the research, finite analytical formulas for calculating the characteristic exponent v, the determination of which is the central part of any problem, the mathematical model of which is the Mathieu equation are obtained. In fact, a direct analytical dependence of v on the initial parameters of the equation a, q is established. This is especially important, since the parameter v plays the role of an indicator of such properties of solutions of the Mathieu equation as boundedness and periodicity.

The proposed analytical method is a real alternative to the application of approximate methods in solving any problems that are reduced to the Mathieu equation. The presence of finite analytic formulas will allow avoiding the procedure of finding the solutions of the equation in the future. Instead, to solve the problem in each specific case, it is enough to implement the obtained analytical formulas numerically.

Author Biographies

Yurii Krutii, Odessa State Academy of Civil Engineering and Architecture Didrihsona str., 4, Odessa, Ukraine, 65029

Doctor of Technical Sciences, Associate Professor, Vice-rector in the Research and Educational Work

Alexander Vasiliev, Odessa I. I. Mechnikov National University Dvoryanskaya str., 2, Odessa, Ukraine, 65082

PhD, Associate Professor

Department of optimal control and economic cybernetics

References

  1. Mathieu, E. (1868). Mémoire sur le mouvement vibratoire d’une membrane de forme elliptique. Journal de Mathematiques Pures et Appliquees, 13, 137–203.
  2. Bateman, H., Erdelyi, A. (1955). Higher Transcendental Functions. Vol. 3. New York, Toronto, London: MC Graw-Hill Book Company Inc., 292.
  3. Tisserand, F. (1894). Traite de Mecanique celeste. Vol. 3. Paris: Gauthier-Villars et fils, 347.
  4. Whittaker, G. N., Watson, A. (1952). Course of Modern Analysis. Cambridge: Cambridge University Press, 314.
  5. Poincare, H. (1893). Les Methodes nouvelles de la Mecanique celeste. Vol. 2. Paris: Gauthier-Villars et fils, 508.
  6. Stoker, J. J. (1950). Nonlinear Vibrations in Mechanical and Electrical Systems. New York: Interscience Publishers, 273.
  7. McLachlan, N. W. (1947). Theory and Applications of Mathieu Functions. Oxford: Clarendon, 401.
  8. Ruby, L. (1966). Applications of the Mathieu equation. American Journal of Physics, 64 (1), 39–44. doi: https://doi.org/10.1119/1.18290
  9. Strutt, M. J. O. (1932). Lamésche – Mathieusche – und Verwandte Funktionen in Physik und Technik. Springer. doi: https://doi.org/10.1007/978-3-642-92306-7
  10. Ward, M. (2010). Lecture Notes on Basic Floquet Theory. Available at: http://www.emba.uvm.edu/~jxyang/teaching/
  11. Wolf, G. Mathieu Functions and Hill’s Equation. Digital Library of Mathematical Functions (DLMF). Available at: https://dlmf.nist.gov/28
  12. Humphries, S. Jr. (1956). Principles of Charged Particle Acceleration. New York: John Wiley & Sons, 561.
  13. Sudakov, M. Y. (2000). A diagram of the stable secular motion of ions trapped in an RF quadrupole field in the presence of additional harmonic quadrupole excitation. Technical Physics Letters, 26 (10), 870–872. doi: https://doi.org/10.1134/1.1321223
  14. Sudakov, M., Konenkov, N., Douglas, D. J., Glebova, T. (2000). Excitation frequencies of ions confined in a quadrupole field with quadrupole excitation. Journal of the American Society for Mass Spectrometry, 11 (1), 10–18. doi: https://doi.org/10.1016/s1044-0305(99)00111-7
  15. Baranov, V. I. (2003). Analytical approach for description of ion motion in quadrupole mass spectrometer. Journal of the American Society for Mass Spectrometry, 14 (8), 818–824. doi: https://doi.org/10.1016/s1044-0305(03)00325-8
  16. Baranov, V. (2004). Ion energy in quadrupole mass spectrometry. Journal of the American Society for Mass Spectrometry, 15 (1), 48–54. doi: https://doi.org/10.1016/j.jasms.2003.09.006
  17. Mamontov, E. V., Kiryushin, D. V. (2012). Space-time focusing of charged particles in radio-frequency linear electric fields. Technical Physics, 57 (9), 1245–1250. doi: https://doi.org/10.1134/s1063784212090186
  18. Mamontov, E. V., Kiryushin, D. V., Zhuravlev, V. V. (2014). Oscillations of ions in a superposition of linear high-frequency. Technical Physics, 59 (7), 1056–1060. doi: https://doi.org/10.1134/s1063784214070202
  19. Pipes, L. A. (1953). Matrix Solution of Equations of the Mathieu‐Hill Type. Journal of Applied Physics, 24 (7), 902–910. doi: https://doi.org/10.1063/1.1721400
  20. Dawson, P. H. (Ed.) (1976). Quadrupole Mass Spectrometry and its Applications. Elsevier, 372. doi: https://doi.org/10.1016/c2013-0-04436-2
  21. March, R. E., Todd, J. F. J. (2005). Quadrupole Ion Trap Mass Spectrometry. John Wiley & Sons. doi: https://doi.org/10.1002/0471717983
  22. Konenkov, N. V., Sudakov, M., Douglas, D. J. (2002). Matrix methods for the calculation of stability diagrams in quadrupole mass spectrometry. Journal of the American Society for Mass Spectrometry, 13 (6), 597–613. doi: https://doi.org/10.1016/s1044-0305(02)00365-3
  23. Carrico, J. P., Price, D. (1972). Dynamic Mass Spectrometry. Vol. 2. London: Heyden & Son Ltd, 352.
  24. Meixner, J., Schafke, F. W., Wolf, G. (1980). Mathieu Functions and Spheroidal Functions and Their Mathematical Foundations: Further Studies. Springer-Verlag, 126. doi: https://doi.org/10.1007/bfb0096194
  25. Floquet, G. (1883). Sur les équations différentielles linéaires à coefficients périodiques. Annales Scientifiques de l’École Normale Supérieure, 12, 47–88. doi: https://doi.org/10.24033/asens.220
  26. Abramowitz, M., Stegun, I. A. (Eds.) (1964). Handbook of Mathematical Foundations with Formulas, Graphs and Mathematical Tables. Washington: National Bureau of Standards of Applied Mathematics, 1046.
  27. Coisson, R., Vernizzi, G., Yang, X. (2009). Mathieu functions and numerical solutions of the Mathieu equation. 2009 IEEE International Workshop on Open-source Software for Scientific Computation (OSSC). doi: https://doi.org/10.1109/ossc.2009.5416839
  28. Abramov, A. A., Kurochkin, S. V. (2007). Calculation of solutions to the Mathieu equation and of related quantities. Computational Mathematics and Mathematical Physics, 47 (3), 397–406. doi: https://doi.org/10.1134/s0965542507030050
  29. Acar, G., Feeny, B. F. (2016). Floquet-Based Analysis of General Responses of the Mathieu Equation. Journal of Vibration and Acoustics, 138 (4), 041017. doi: https://doi.org/10.1115/1.4033341
  30. Prikhodko, A. A., Nesterov, A. V., Nesterov, S. V. (2016). Analysis of Mathieu Equation Stable Solutions in the First Zone of Stability. Procedia Engineering, 150, 341–346. doi: https://doi.org/10.1016/j.proeng.2016.06.715
  31. Kovacic, I., Rand, R., Sah, S. M. (2018). Mathieu's Equation and Its Generalizations: Overview of Stability Charts and Their Features. Applied Mechanics Reviews, 70 (2), 020802. doi: https://doi.org/10.1115/1.4039144
  32. Ghose Choudhury, A., Guha, P. (2014). Damped equations of Mathieu type. Applied Mathematics and Computation, 229, 85–93. doi: https://doi.org/10.1016/j.amc.2013.11.106
  33. Sofroniou, A., Bishop, S. (2014). Dynamics of a Parametrically Excited System with Two Forcing Terms. Mathematics, 2 (3), 172–195. doi: https://doi.org/10.3390/math2030172
  34. Gantmakher, F. R. (1988). Matrix theory. Moscow: Nauka, 552.
  35. Kuznecova, T. D., Smirnov, A. A. (1969). Tablicy harakteristicheskih pokazateley dlya uravneniya Mat'e. Moscow: Vychislitel'niy centr AN SSSR, 69.

Downloads

Published

2018-08-16

How to Cite

Krutii, Y., & Vasiliev, A. (2018). Development of the analytical method of the general mathieu equation solution. Eastern-European Journal of Enterprise Technologies, 4(4 (94), 19–26. https://doi.org/10.15587/1729-4061.2018.140634

Issue

Section

Mathematics and Cybernetics - applied aspects