Development of techniques to predict and prevent both the effect of xenobiotics and their migration into pig-derived products

Authors

DOI:

https://doi.org/10.15587/1729-4061.2018.142535

Keywords:

ecocidal impact, migration of xenobiotics, antitoxic additive, safe pig production

Abstract

This paper reports research into the influence of heavy metals, specifically cadmium and plumbum, on the body of young pigs, and the effectiveness of the preparation to prevent intoxication with heavy metals. Heavy metals were fed separately and jointly, in doses that exceed the maximum permissible concentrations in fodder by 10 and 20 times. Thus, we have simulated the process of intoxication of a biological object (pigs) with heavy metals, which could happen as a result of environmental pollution. The study was carried out to determine the direction and degree of influence of heavy metals on the live weight, the weight of internal organs of animals, the degree of accumulation in pig production, as well as determining the effectiveness of an anti‒toxic additive that acts as a heavy metals detoxicant. Statistical processing of the acquired data made it possible to construct mathematical model and to establish the correlation relationship between the studied factors.

It was established that heavy metals exert a significant negative impact on the intensity of growth of animals with an elevated effect in proportion to the dose. This is confirmed by the high correlation connection between these attributes, the correlation coefficient (r) is equal to 0.854. Thus, the live weight of pigs at the end of the experiment both in series I and II under the action of chemotoxicants reduced by 5.5‒14.8 % in comparison control. The strength of the impact depended on the toxin itself. Thus, the greatest negative effect was observed under the action of cadmium alone, as well as cadmium and plumbum together. The animals that received, against the background of intoxication with plumbum and cadmium, the antitoxic fodder additive, maintained the intensity of growth at the level of control, while, based on the results of series I, outperformed its indicators. Heavy metals mostly accumulated in the liver and kidneys, with the lowest level in the lungs, heart, and muscles. The constructed regression equations demonstrated that the main influence on the increase in the content of cadmium and plumbum in organs and meat is exerted by a rising dose of the respective element in the fodder. The content of plumbum in fodder affected the content of cadmium in meat, an increase in its concentration led to a decrease in the content of cadmium in meat.

The research data obtained allow better understanding of the direction and the extent of effect of heavy metals on biological objects. Mathematical models could be employed to predict the content of toxins in pig products

Author Biographies

Oleksandr Nanka, Kharkiv Petro Vasylenko National Technical University of Agriculture Moskovskyi ave., 45, Kharkiv, Ukraine, 61050

PhD, Associate Professor

Department of Technical Systems and Animal Husbandry Technologies

Olga Chalaya, Kharkiv Petro Vasylenko National Technical University of Agriculture Moskovskyi ave., 45, Kharkiv, Ukraine, 61050

PhD, Associate Professor

Department of Agrotechnology and Ecology

Sergiu Nagornij, Kharkiv Petro Vasylenko National Technical University of Agriculture Moskovskyi ave., 45, Kharkiv, Ukraine, 61050

PhD, Associate Professor

Department of Technical Systems and technologies of animal husbandry named after B. P. Shabelnik

Oleksandr Chalyi, Kharkiv State Zooveterinary Academy Academichna str., 1, Mala Danylivka, Dergachi district, Kharkiv region, Ukraine, 62341

PhD, Associate Professor

Department of Livestock and Poultry Technologies

References

  1. Savchenko, Yu. I., Savchuk, I. M., Savchenko, M. H. (2016). Kontsentratsiya Pb i Cd u svynyni za vykorystannia v ratsionakh riznykh zernosumishei. Visnyk ahrarnoi nauky, 5, 21–24.
  2. Ashok Kumar, G. (2015). Effects of Heavy Metals and Preventive Measures. RRJEES, 3 (1), 10–20.
  3. Titov, A. F., Kaznina, N. M., Talanova, V. V. (2014). Tyazhelye metally i rasteniya. Petrozavodsk: Karel'skiy nauchniy centr RAN, 194.
  4. Basiladze, G. V., Kalandiya, E. G. (2017). Vliyanie zagryaznennogo tyazhelymi metallami moloka na bezopasnost' molochnyh produktov. Innovacionnye tekhnologii v APK: teoriya i praktika: sbornik statey V Mezhdunarodnoy nauchno-prakticheskoy konferencii. Penza: RIO PGAU, 10–13.
  5. Rybkin, V. S., Bogdanov, A. N., Chuykov, Yu. S., Teplaya, G. A. (2014). Tyazhelye metally kak faktor vozmozhnyh ekologicheski obuslovlennyh zabolevaniy v Astrahanskom regione. Gigiena i sanitariya, 2, 27–30.
  6. Panagos, P., Van Liedekerke, M., Yigini, Y., Montanarella, L. (2013). Contaminated Sites in Europe: Review of the Current Situation Based on Data Collected through a European Network. Journal of Environmental and Public Health, 2013, 1–11. doi: https://doi.org/10.1155/2013/158764
  7. Kroik, H. A. (2011). Toksykolohichni aspekty nakopychennia ta rozpodilu vazhkykh metaliv u gruntakh promyslovykh ahlomeratsiy. Bioriznomanittia ta rol tvaryn v ekosystemakh: Materialy VI Mizhnarodnoi naukovoi konferentsiyi. Dnipropetrovsk: Vyd-vo DNU, 15–18.
  8. Kuranova, A. P., Ivanova, E. B. (2010). Tyazhelye metally kak ekotoksikanty. Prikladnaya toksikologiya, 1 (2), 14–17.
  9. Burlaka, V. A., Hrabar, I. H., Mykytiuk, V. M. et. al.; Burlaka, V. A. (Ed.) (2012). Deterhenty suchasnosti. Zhytomyr: Vyd-vo «Zhytomyrskyi natsionalnyi ahroekolohichnyi universytet», 652.
  10. Bokova, T. I. (2011). Ekologicheskie osnovy innovacionnogo sovershenstvovaniya pishchevyh produktov. Novosibirsk: Izd-vo NGAU, 284.
  11. Yanovych, D. O., Yanovych, N. Ye. (2011). Biotransformatsiya ksenobiotykiv i mekhanizmy yikh rehuliatsiyi. Naukovyi visnyk Lvivskoho natsionalnoho universytetu veterynarnoi medytsyny ta biotekhnolohiyi im. S. Z. Hzhytskoho, 13 (2 (48)), 305–311.
  12. Hassan, Z., Aarts, M. G. M. (2011). Opportunities and feasibilities for biotechnological improvement of Zn, Cd or Ni tolerance and accumulation in plants. Environmental and Experimental Botany, 72 (1), 53–63. doi: https://doi.org/10.1016/j.envexpbot.2010.04.003
  13. Gonohova, M. (2008). Vliyanie na sviney tyazhelyh metallov v kormah. Zhivotnovodstvo Rossii, 12, 25–26.
  14. Shatorna, V. F., Harets, V. I., Nefodova, O. O., Kryvoshei, V. V. (2016). Mekhanizmy vplyvu vazhkykh metaliv na morfofunktsionalnyi stan travnoi systemy. Visnyk problem biolohiyi i medytsyny, 1 (1 (126)), 57–61.
  15. Boguslavskaya, N. V. (2010). Zagryaznenie okruzhayushchey sredy – vazhneyshiy faktor uhudsheniya produktivnogo zdorov'ya zhivotnyh. Ekologicheskaya bezopasnost' v APK. Referativniy zhurnal, 1, 224.
  16. Romaniuk, A. M., Rudna, M. M., Rudna, V. M., Kuzenko, Ye. V. (2012). Vplyv nespryiatlyvykh faktoriv dovkillia (soli vazhkykh metaliv) na imunnu systemu (ohliad literatury). Visnyk Sumskoho derzhavnoho universytetu. Seriya: Medytsyna, 2, 36–41.
  17. Chalaya, O. S. (2013). Rost i razvitie sviney na otkorme pri vysokih dozah kadmiya i svinca v racione. Izvestiya Orenburgskogo gosudarstvennogo agrarnogo universiteta, 2 (40), 158–160.
  18. Chalaya, O. S. (2013). Deystvie kadmiya i svinca na organizm molodnyaka sviney na otkorme. Vestnik Kurskoy gosudarstvennoy sel's'kohozyaystvennoy akademii, 8, 78–80.
  19. Chalaia, O. S. (2012). Vidhodivelni ta zabiini yakosti svynei za vplyvu toksychnykh doz vazhkykh metaliv. Problemy zooinzhenerii ta veterynarnoi medytsyni, 24, 66–69.
  20. Sharamok, T. S., Esipova, N. B., Fedonenko, O. V., Biletska, O. V. (2016). Ecological and hematological characteristics of common roach (rutilus rutilus linnaeus, 1758) in the zaporozhye reservoir. Biological Bulletin of Bogdan Chmelnitskiy Melitopol State Pedagogical University, 6 (2), 303–310.
  21. Lane, E. A., Canty, M. J., More, S. J. (2015). Cadmium exposure and consequence for the health and productivity of farmed ruminants. Research in Veterinary Science, 101, 132–139. doi: https://doi.org/10.1016/j.rvsc.2015.06.004
  22. MacLachlan, D. J., Budd, K., Connolly, J., Derrick, J., Penrose, L., Tobin, T. (2016). Arsenic, cadmium, cobalt, copper, lead, mercury, molybdenum, selenium and zinc concentrations in liver, kidney and muscle in Australian sheep. Journal of Food Composition and Analysis, 50, 97–107. doi: https://doi.org/10.1016/j.jfca.2016.05.015
  23. Fiati Kenston, S. S., Su, H., Li, Z., Kong, L., Wang, Y., Song, X. et. al. (2018). The systemic toxicity of heavy metal mixtures in rats. Toxicology Research, 7 (3), 396–407. doi: https://doi.org/10.1039/c7tx00260b
  24. López-Alonso, M., García-Vaquero, M., Benedito, J. L., Castillo, C., Miranda, M. (2012). Trace mineral status and toxic metal accumulation in extensive and intensive pigs in NW Spain. Livestock Science, 146 (1), 47–53. doi: https://doi.org/10.1016/j.livsci.2012.02.019
  25. Zhai, Q., Narbad, A., Chen, W. (2015). Dietary Strategies for the Treatment of Cadmium and Lead Toxicity. Nutrients, 7 (1), 552–571. doi: https://doi.org/10.3390/nu7010552
  26. Dalia, M. (2010). El-Nahal Effect of using pectin on lead toxicity. The Journal of American Science, 6 (12), 541–554.
  27. Butsiak, H. A., Cherevko, M. V., Sukhorska, O. P. (2010). Vykorystannia adsorbentiv ta antydotiv yak profilaktychnyi zasib poperedzhennia toksykoziv. Naukovyi visnyk LNUVMBT imeni S. Z. Gzhytskoho, 12 (3 (45)), 120–128.
  28. Burlaka, V. A., Lavryniuk, O. O. (2016). Kumuliatyvnist vazhkykh metaliv u vnutrishni orhany svynei pry vkliuchenni sorbentiv, za umov dovhotryvalosti yikh nadkhodzhennia. Biodiversity after the Chernobyl accident, 34–40.
  29. Lysenko, M. A. (2011). Snizhenie tyazhelyh metallov v organah i tkanyah pticy. Pticevodstvo, 2, 27–28.
  30. Baranovskyi, D. I., Hetmanets, O. M., Khokhlov, A. M. (2017). Biometriya v prohramnomu seredovyshchi MS Excel. Kharkiv: SPD FO Brovin O.V., 90.
  31. Lebed'ko, E. Ya., Hohlov, A. M., Baranovskiy, D. I., Getmanec, O. M. (2018). Biometriya v Excel. Sankt-Peterburg: EBS Lan', 172.

Downloads

Published

2018-09-18

How to Cite

Nanka, O., Chalaya, O., Nagornij, S., & Chalyi, O. (2018). Development of techniques to predict and prevent both the effect of xenobiotics and their migration into pig-derived products. Eastern-European Journal of Enterprise Technologies, 5(10 (95), 31–39. https://doi.org/10.15587/1729-4061.2018.142535