Simulation high-voltage triple-junction photovoltaic converters based on amorphous and microcrystalline silicon

Authors

  • Сергій Миколайович Чеботарьов Southern Scientific Centre of Russian Academy of Science Chehova 41, Rostov-on-Don, 344006, Russia, Russian Federation
  • Олександр Сергійович Пащенко Southern Scientific Centre of Russian Academy of Science Chehova 41, Rostov-on-Don, 344006, Russia, Russian Federation
  • Марина Леонидівна Луніна Southern Scientific Centre of Russian Academy of Science Chehova 41, Rostov-on-Don, 344006, Russia, Russian Federation
  • Володимир Олександрович Ірха Limited Liability Company Special design and technology department «Inversiya» Zorge 7, Rostov-on-Don, 344006, Russia, Russian Federation

DOI:

https://doi.org/10.15587/1729-4061.2013.14504

Keywords:

Triple-junction thin-film photovoltaic converter, amorphous and microcrystalline silicon, numerical simulation

Abstract

The design of a triple-junction thin-film photovoltaic converter with hydrogen and oxygen microcrystalline and amorphous silicon layers α-Si:H(n-i-p)/μс-Si:O(n-i-p)/μс-Si:H(n-i-p) is suggested. The physical model and the software for simulation performances of these photovoltaic converters are developed. The numerical simulation results demonstrate that efficiency of the proposed thin-film photovoltaic converters can be increased to 16 %, open-circuit voltage UOC=1.957 V, fill factor ff=78%. The analyses of the triple-junction structure’s external quantum efficiency spectral dependences shows that combining α-Si:H and μс-Si:H n-i-p junction admits to use different solar irradiation regions to expand spectral sensitivity of silicon photovoltaic converter in UV and near-IR regions. Improving the performance ensures by increasing absorptance in the visible region (λ=500-800 nm) to 40-60 % and in the near-infrared region (λ=800-1100 nm) to 75-80 %.

Author Biographies

Сергій Миколайович Чеботарьов, Southern Scientific Centre of Russian Academy of Science Chehova 41, Rostov-on-Don, 344006, Russia

Candidate of Science in Engineering, senior researcher,

Laboratory of crystals and structures for solid state electronics

Олександр Сергійович Пащенко, Southern Scientific Centre of Russian Academy of Science Chehova 41, Rostov-on-Don, 344006, Russia

Candidate of science in Physics and Maths, researcher,

Laboratory of crystals and structures for solid state electronics

Марина Леонидівна Луніна, Southern Scientific Centre of Russian Academy of Science Chehova 41, Rostov-on-Don, 344006, Russia

Candidate of science in Physics and Maths, senior researcher,

Photovoltaics laboratory

Володимир Олександрович Ірха, Limited Liability Company Special design and technology department «Inversiya» Zorge 7, Rostov-on-Don, 344006, Russia

Senior engineer

References

  1. Green, M. A. Solar cell efficiency tables (version 41) [Текст] / M.A. Green, K. Emery, Y. Hishikawa, W. Warta, E.D. Dunlop // Prog. Photovolt: Res. Appl. - 2013. - Т. 21. - С.1-11.
  2. Cousins, P. J. Gen III: improved performance at lower cost [Текст] / P.J. Cousins, D.D. Smith, H.C. Luan. // 35th IEEE PVSC, Honolulu. HI. - 2010. – С.112-115.
  3. Benagli, S. High-efficiency amorphous silicon devices on LPCVD-ZNO TCO prepared in industrial KAI-M R&D Reactor [Текст]/ S. Benagli, D. Borrello, E. Vallat-Sauvain // 24th European Photovoltaic Solar Energy Conference. Hamburg. – 2009. – С. 234-239.
  4. Чеботарев, С. Н. Моделирование зависимостей функциональных характеристик кремниевых солнечных элементов, полученных методом ионно-лучевого осаждения от толщины и уровня легирования фронтального слоя [Текст] / С.Н. Чеботарев, А.С. Пащенко, М.Л. Лунина // Вестник Южного научного центра РАН. – 2012. - Т. 7. - № 4. - С.25-30.
  5. Лунин, Л.С. Ионно-лучевое осаждение фотоактивных нанослоев кремниевых солнечных элементов [Текст]/ Л.С. Лунин, С.Н. Чеботарев, А.С. Пащенко, Л.Н. Болобанова // Неорганические материалы. – 2012. - Т. 48. - № 5. - С.517-522.
  6. Лунин, Л.С. Моделирование и исследование характеристик фотоэлектрических преобразователей на основе GaAs и GaSb [Текст]/ Л.С. Лунин, А.С. Пащенко // Журнал технической физики. - 2011. - Т. 81. - вып. 9. - С. 71-76.
  7. Fonash, S. A manual for AMPS-1D for Windows 95/NT a one-dimensional device simulation program for the analysis of microelectronic and photonic structures [Текст] / S. Fonash, J. Arch, J. Ciuffi. - Pennsylvania: Pennsylvania State University Press, 1997. – 126 с.
  8. Palankovski, V. Analysis and simulation of heterostructure devices [Текст] / V. Palankovski, R.Quay - Wien: Springer-Verlag, 2004. – 289 с.
  9. Fonash S. Solar cell device physics [Текст] / S. Fonash. - New York: Academic Press, 2010. – 353 с.
  10. Carlson, D.E. Semiconductors and Semimetals [Текст] / Carlson, D.E. - Amsterdam: Academic Press, 1984. – 385 с.
  11. Jensen, N. Optimization and characterization of amorphous/crystalline silicon heterojunction solar cells [Текст] / N. Jensen, R.M. Hausner, R.B: Bergmann // Prog. Photovolt: Res. Appl. - 2002. - Т. 10 - С. 1–13.
  12. Shockley, W. Statistics of the recombination of holes and electrons [Текст] / W. Shockley, W.T. Read. // Phys. Rev. - 1952. - Т. 87. - с. 835.
  13. Schropp, R.E.I. Amorphous and microcrystalline silicon solar cells – modeling, materials and device technology [Текст] / R.E.I. Schropp and M. Zeman. - Kluwer. Boston/Dordrecht/London, 1998. - 253 с.
  14. Колтун, М.М. Оптика и метрология солнечных элементов [Текст] / М.М. Колтун – М.: «Наука». - 1985. - 281 с.
  15. Green, M.A. Emery, K., Hishikawa, Y., Warta, W., Dunlop, E.D. (2013). Solar cell efficiency tables (version 41). Prog. Photovolt: Res. Appl., 21, 1-11.
  16. Cousins, P. J., Smith, D.D., Luan H.C. (2010). Gen III: improved performance at lower cost. 35th IEEE PVSC, Honolulu. HI, 112-115.
  17. Benagli, S., Borrello, D., Vallat-Sauvain, E. (2009). High-efficiency amorphous silicon devices on LPCVD-ZNO TCO prepared in industrial KAI-M R&D Reactor. 24th European Photovoltaic Solar Energy Conference. Hamburg, 234-239.
  18. Chebotarev, S. N., Pashchenko, A. S., Lunina, M.L (2011). Simulation of dependences of functional characteristics of Si solar cells grown by ion beam deposition from thickness and doping frontal layer. Vestnik SSC RAS. 7(4), 25-30.
  19. Lunin, L.S., Chebotarev, S. N., Pashchenko, A. S., Bolobanova, L.N. (2012). Ion beam deposition of photoactive nanolayers for silicon solar cells. Inorganic materials, 48(5), 517-522.
  20. Lunin, L.S., Pashchenko, A. S. (2011). Simulation and investigation of the GaAs and GaSb photovoltaic cell performance. Zhurnal Tekhnicheskoі Fiziki, 81(9), 71–76.
  21. Fonash, S., Arch, J., Ciuffi, J. (1997). A manual for AMPS-1D for Windows 95/NT a one-dimensional device simulation program for the analysis of microelectronic and photonic structures. Pennsylvania: Pennsylvania State University Press.
  22. Palankovski, V., Quay, R. (2004). Analysis and simulation of heterostructure devices. Wien: Springer-Verlag.
  23. Fonash, S. (2010). Solar cell device physics. New York: Academic Press.
  24. Carlson, D.E. (1984). Semiconductors and Semimetals. Amsterdam: Academic Press.
  25. Jensen, N., Hausner, R.M., Bergmann, R.B. (2002). Optimization and characterization of amorphous/crystalline silicon heterojunction solar cells. Prog. Photovolt: Res. Appl., 10, 1–13.
  26. Shockley, W., Read, W.T. (1952). Statistics of the recombination of holes and electrons. Phys. Rev., 87, 835-842.
  27. Schropp, R.E.I., Zeman, M. (1998). Amorphous and microcrystalline silicon solar cells – modeling, materials and device technology. Kluwer. Boston/Dordrecht/London.
  28. Koltun, .M.M. (1985). Optic and metrology of solar cells. Мoscow, USSR: «Nauka».

Published

2013-06-20

How to Cite

Чеботарьов, С. М., Пащенко, О. С., Луніна, М. Л., & Ірха, В. О. (2013). Simulation high-voltage triple-junction photovoltaic converters based on amorphous and microcrystalline silicon. Eastern-European Journal of Enterprise Technologies, 3(5(63), 29–34. https://doi.org/10.15587/1729-4061.2013.14504