Development of the Markovian model for the life cycle of a project’s benefits
DOI:
https://doi.org/10.15587/1729-4061.2018.145252Keywords:
cognitive scheme, Markovian chain, level of technological maturity, life cycle, life cycle development trajectoriesAbstract
This study has improved the standard P5 (Personnel, planet, profit, process, product), which has already been widely applied globally in the practice of project management. However, the standard P5 provides a scheme of the life cycle of projects’ benefits, which makes it possible to represent the lifecycle processes only at the qualitative level. In order to pass to the quantitative estimates, it has been proposed to apply the Markovian chain that maps a phenomenological representation of complex systems without considering their physical character.
We have constructed a cognitive Markovian model of the life cycle of a project’s benefits using the communications between the states of the project system. The cognitive structure of the life cycle is similar to a directed graph where vertices indicate the state of the system, and links are the communications between them. We have proposed an approach to determining transitional probabilities based on the evaluation of communications, taking into consideration the time costs to perform operations in the form of rules. The character of communications between states s→j in the Markovian chain defines the magnitude of transition probabilities πsj. The time costs required for each state are divided into five intervals πsj: {0} – no costs; {0.01–0.1} – insignificant time costs; {0.1–0.3} – the lowest level of time costs; {0.3–0.7} – average time costs; {0.7–1.0} – the largest time costs. The logic of choosing values for conditional transition probabilities in the Markovian chain makes it possible to determine data for the simulation of the trajectory of the life cycle of projects’ benefits in the coordinates of the probabilities of states of the system and steps.
It has been shown that the application of the Markovian chains is rational in order to represent the life cycle of projects’ benefits. An analysis was performed to determine a certain level of technological maturity of the project environment (organization), which corresponds to the totality of values for transition probabilities. We have studied the influence of the level of technological maturity of the project environment (organization) on the projects’ efficiency.
Another example of the implementation of the project aimed at forming the positive image of an educational establishment by applying the frontal information communication via television, the press, by taking part in mass political activities, has also revealed positive estimation. The probability distribution at the beginning of the project (V1) and upon its completion (V2) differs significantly. The implementation of the project increased the magnitudes of probabilities of states p7 (Benefit) and p8 (Additional benefit). At the beginning of the project: р7(V1)+р8(V2)=0.14+0.05=0.19. Upon implementation of the project: р7(V1)+р8(V2)=0.22+0.08=0.30. The evaluation of this project aimed at positive image formation of an educational establishment showed that the results obtained do not contradict the hypothesis about the possibility of applying the Markovian chains to determine the characteristics of the life cycle of a project’s benefitsReferences
- Rehacek, I. P. (2017). Application and usage of the standards for project management and their comparison. Journal of Engineering and Applied Sciences, 12 ((4)), 994–1002.
- Managing Successful Programmes. Available at: https://www.itgovernance.co.uk/shop/product/managing-successful-programmes-2011-edition
- The GPM®Global P5TM Standard forSustainabilityin Project Management. Ver. 1.5. GPM Global. Available at: https://www.greenprojectmanagement.org/the-p5-standard
- Qureshi, S. M., Kang, C. (2015). Analysing the organizational factors of project complexity using structural equation modelling. International Journal of Project Management, 33 (1), 165–176. doi: https://doi.org/10.1016/j.ijproman.2014.04.006
- PM2 project management methodology guide (2016). Luxembourg, 147. doi: http://doi.org/10.2799/957700
- Biloshchytskyi, A., Kuchansky, A., Andrashko, Y., Biloshchytska, S., Kuzka, O., Shabala, Y., Lyashchenko, T. (2017). A method for the identification of scientists' research areas based on a cluster analysis of scientific publications. Eastern-European Journal of Enterprise Technologies, 5 (2 (89)), 4–11. doi: https://doi.org/10.15587/1729-4061.2017.112323
- Drozd, J., Drozd, A. (2013). Models, methods and means as resources for solving challenges in co-design and testing of computer systems and their components. The International Conference on Digital Technologies 2013. doi: https://doi.org/10.1109/dt.2013.6566307
- Wu, C., Nikulshin, V. (2000). Method of thermoeconomical optimization of energy intensive systems with linear structure on graphs. International Journal of Energy Research, 24 (7), 615–623. doi: https://doi.org/10.1002/1099-114x(20000610)24:7<615::aid-er608>3.0.co;2-p
- Biloshchytskyi, A., Myronov, O., Reznik, R., Kuchansky, A., Andrashko, Y., Paliy, S., Biloshchytska, S. (2017). A method to evaluate the scientific activity quality of HEIs based on a scientometric subjects presentation model. Eastern-European Journal of Enterprise Technologies, 6 (2 (90)), 16–22. doi: https://doi.org/10.15587/1729-4061.2017.118377
- Verkhivker, G. (2004). The use of chemical recuperation of heat in a power plant. Energy, 29 (3), 379–388. doi: https://doi.org/10.1016/j.energy.2003.10.010
- Kolesnіkov, O., Gogunskii, V., Kolesnikova, K., Lukianov, D., Olekh, T. (2016). Development of the model of interaction among the project, team of project and project environment in project system. Eastern-European Journal of Enterprise Technologies, 5 (9 (83)), 20–26. doi: https://doi.org/10.15587/1729-4061.2016.80769
- Gogunskii, V., Bochkovsky, А., Moskaliuk, A., Kolesnikov, O., Babiuk, S. (2017). Developing a system for the initiation of projects using a Markov chain. Eastern-European Journal of Enterprise Technologies, 1 (3 (85)), 25–32. doi: https://doi.org/10.15587/1729-4061.2017.90971
- Gogunskii, V., Kolesnikov, O., Kolesnikova, K., Lukianov, D. (2016). "Lifelong learning" is a new paradigm of personnel training in enterprises. Eastern-European Journal of Enterprise Technologies, 4 (2 (82)), 4–10. doi: https://doi.org/10.15587/1729-4061.2016.74905
- Demin, D. (2017). Improvement of approaches to the construction of the training process of sportsmen, considered within the framework of the realization of informal education processes. ScienceRise: Pedagogical Education, 9 (17), 28–46. doi: https://doi.org/10.15587/2519-4984.2017.111110
- Lukianov, D., Bespanskaya-Paulenka, K., Gogunskii, V., Kolesnikov, O., Moskaliuk, A., Dmitrenko, K. (2017). Development of the markov model of a project as a system of role communications in a team. Eastern-European Journal of Enterprise Technologies, 3 (3 (87)), 21–28. doi: https://doi.org/10.15587/1729-4061.2017.103231
- Durand, G., Belacel, N., LaPlante, F. (2013). Graph theory based model for learning path recommendation. Information Sciences, 251, 10–21. doi: https://doi.org/10.1016/j.ins.2013.04.017
- Kaiser, M. G., El Arbi, F., Ahlemann, F. (2015). Successful project portfolio management beyond project selection techniques: Understanding the role of structural alignment. International Journal of Project Management, 33 (1), 126–139. doi: https://doi.org/10.1016/j.ijproman.2014.03.002
- Kluge, R., Stein, M., Varró, G., Schürr, A., Hollick, M., Mühlhäuser, M. (2017). A systematic approach to constructing incremental topology control algorithms using graph transformation. Journal of Visual Languages & Computing, 38, 47–83. doi: https://doi.org/10.1016/j.jvlc.2016.10.003
- Todorović, M. L., Petrović, D. Č., Mihić, M. M., Obradović, V. L., Bushuyev, S. D. (2015). Project success analysis framework: A knowledge-based approach in project management. International Journal of Project Management, 33 (4), 772–783. doi: https://doi.org/10.1016/j.ijproman.2014.10.009
- Biloshchytskyi, A., Kuchansky, A., Biloshchytska, S., Dubnytska, A. (2017). Conceptual model of automatic system of near duplicates detection in electronic documents. 2017 14th International Conference The Experience of Designing and Application of CAD Systems in Microelectronics (CADSM). doi: https://doi.org/10.1109/cadsm.2017.7916155
- Ma, F., Rudenko, S., Kolesnikova, K. (2014). Management of the Image of the Educational Institution. Jinan, 84.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2018 Varvara Piterska, Olexii Kolesnikov, Dmytro Lukianov, Kateryna Kolesnikova, Viktor Gogunskii, Tetiana Olekh, Anatoliy Shakhov, Sergey Rudenko
This work is licensed under a Creative Commons Attribution 4.0 International License.
The consolidation and conditions for the transfer of copyright (identification of authorship) is carried out in the License Agreement. In particular, the authors reserve the right to the authorship of their manuscript and transfer the first publication of this work to the journal under the terms of the Creative Commons CC BY license. At the same time, they have the right to conclude on their own additional agreements concerning the non-exclusive distribution of the work in the form in which it was published by this journal, but provided that the link to the first publication of the article in this journal is preserved.
A license agreement is a document in which the author warrants that he/she owns all copyright for the work (manuscript, article, etc.).
The authors, signing the License Agreement with TECHNOLOGY CENTER PC, have all rights to the further use of their work, provided that they link to our edition in which the work was published.
According to the terms of the License Agreement, the Publisher TECHNOLOGY CENTER PC does not take away your copyrights and receives permission from the authors to use and dissemination of the publication through the world's scientific resources (own electronic resources, scientometric databases, repositories, libraries, etc.).
In the absence of a signed License Agreement or in the absence of this agreement of identifiers allowing to identify the identity of the author, the editors have no right to work with the manuscript.
It is important to remember that there is another type of agreement between authors and publishers – when copyright is transferred from the authors to the publisher. In this case, the authors lose ownership of their work and may not use it in any way.