Invariants and first integrals for a special case of a controlled process in an active aviation system

Authors

  • Володимир Олександрович Касьянов National Aviation University Kosmonavta Komarova av., 1, Kyiv, 03680, Ukraine
  • Андрій Вікторович Гончаренко National Aviation University Kosmonavta Komarova av., 1, Kyiv, 03680, Ukraine

DOI:

https://doi.org/10.15587/1729-4061.2013.14672

Keywords:

Hamiltonian, constant, multi-alternativeness, conflict, safety, functional, preference, entropy, variation

Abstract

In this work it has been found Hamiltonians for the theoretically considered, one of the simplest particular cases of a variational problem of control in an active aviation system acting in conditions of multi-alternativeness and conflicts. The presented researches have been performed for a case when the independent variable, that is time, is not present in the functionals explicitly. The entropies of the functionals are different, even if they have the same formal view of notation, because they include different preferences functions which contain different effectiveness functions.

The considered, in these researches, particular cases are derived from the general view functional with the cognitive function of the general form for the studied eleven special cases.

The sought conserved values have been found, and they are the Hamiltonians which is theoretically substantiated and stipulated by the absence of the independent variable in the functionals in the explicit view.

It is fulfilled the mathematical modeling with the Hamiltonian in the special case for the obtained with the help of the Euler-Lagrange equations the canonical distributions of the individual preferences for the given functionals; the differential equations of the second order for finding extremals of the controlling functions of the functionals. Plotted corresponding diagrams

Author Biographies

Володимир Олександрович Касьянов, National Aviation University Kosmonavta Komarova av., 1, Kyiv, 03680

Professor

Department of Mechanics

Андрій Вікторович Гончаренко, National Aviation University Kosmonavta Komarova av., 1, Kyiv, 03680

PhD

Department of Mechanics

References

  1. Kasyanov, V.O. Variational principle in the problem of ship propulsion and power plant operation with respect to subjective preferences [Текст] / V.O. Kasyanov, A.V. Goncharenko // Науковий вісник Херсонської державної морської академії: Науковий журнал. – Херсон: Видавництво ХДМA, 2012. – № 2(7). – С. 56-61.
  2. Касьянов, В.А. Свет и тень. Пропорции теневой экономики. Энтропийный подход: монография [Текст] / В.А. Касьянов, А.В. Гончаренко. – К.: Кафедра, 2013. – 86 с.
  3. Касьянов, В.А. Субъективный анализ: монография [Текст] / В.А. Касьянов. – К.: НАУ, 2007. – 512 с.
  4. Касьянов, В.А. Элементы субъективного анализа: монография [Текст] / В.А. Касьянов. – К.: НАУ, 2003. – 224 с.
  5. Гельфанд, И.М. Вариационное исчисление [Текст] / И.М. Гельфанд, С.В. Фомин. – М.: Государственное издательство физико-математической литературы, 1961. – 228 с.
  6. Kroes M.J. Aircraft powerplants. 7th ed. [Текст] / M.J. Kroes, T.W. Wild. – New York, New York, USA: GLENCOE Macmillan/McGraw-Hill, International Editions, 1994. – 694 p.
  7. Kuiken K. Diesel engines for ship propulsion and power plants from 0 to 100,000 kW: in 2 parts [Текст] / K. Kuiken. – Onnen, The Netherlands: Target Global Energy Training, 2008. – Part I. – 509 p.
  8. Kuiken K. Diesel engines for ship propulsion and power plants from 0 to 100,000 kW: in 2 parts [Текст] / K. Kuiken. – Onnen, The Netherlands: Target Global Energy Training, 2008. – Part II. – 442 p.
  9. Silberberg E. The structure of economics. A mathematical analysis. 3rd ed. [Текст] / E. Silberberg, W. Suen. – New York: McGraw-Hill Higher Education, 2001. – 668 p.
  10. Kolstad Ch.D. Environmental Economics [Текст] / Ch.D. Kolstad. – New York: Oxford Univ. Press, 2000. – 400 p.
  11. Random house Webster’s unabridged dictionary. 2nd ed. [Текст] New-York, USA: Random House, 1999. – 2230 p.
  12. Kasyanov V., Goncharenko A. (2012). Variational principle in the problem of ship propulsion and power plant operation with respect to subjective preferences. Scientific proceedings of Kherson state maritime academy: Scientific journal. – Kherson, Ukraine: Publishing house of Kherson state maritime academy, № 2(7), 56-61.
  13. Kasianov V., Goncharenko A. (2013). Light and shadow. Proportions of shadow economy. Entropy approach: monograph. Kyiv, Ukraine: Kafedra, 86.
  14. Kasianov V. (2007). Subjective analysis: monograph. Kyiv, Ukraine: National Aviation University, 512.
  15. Kasianov V. (2003). Elements of subjective analysis: monograph. Kyiv, Ukraine: National Aviation University, 224.
  16. Gel’fand I., Fomin S. (1961). Calculus of variations. Moscow, USSR: State Publishing House of Physics-Mathematics Literature, 228.
  17. Kroes M.J., Wild T.W. (1994). Aircraft powerplants. 7th ed. New York, New York, USA: GLENCOE Macmillan/McGraw-Hill, International Editions, 694.
  18. Kuiken K. (2008). Diesel engines for ship propulsion and power plants from 0 to 100,000 kW: in 2 parts. Part I. Onnen, The Netherlands: Target Global Energy Training, 509.
  19. Kuiken K. (2008). Diesel engines for ship propulsion and power plants from 0 to 100,000 kW: in 2 parts. Part II. Onnen, The Netherlands: Target Global Energy Training, 442.
  20. Silberberg E., Suen W. (2001). The structure of economics. A mathematical analysis. 3rd ed. New York: McGraw-Hill Higher Education, 668.
  21. Kolstad Ch.D. (2000). Environmental Economics. New York: Oxford Univ. Press, 400.
  22. Random house Webster’s unabridged dictionary. 2nd ed. (1999). New-York, USA: Random House, 2230.

Downloads

Published

2013-06-20

How to Cite

Касьянов, В. О., & Гончаренко, А. В. (2013). Invariants and first integrals for a special case of a controlled process in an active aviation system. Eastern-European Journal of Enterprise Technologies, 3(3(63), 10–13. https://doi.org/10.15587/1729-4061.2013.14672

Issue

Section

Control systems