Solving some infinite-dimensional problems of enterprises arrangement
DOI:
https://doi.org/10.15587/1729-4061.2013.14682Keywords:
Infinite-dimensional problems, problems of enterprise arrangement, optimal division of setsAbstract
There are a lot of publications devoted to infinite-dimensional transportation problems, or (more common) to infinite-dimensional problems of enterprises arrangement with simultaneous division of the region on consumers’ regions, each served by one enterprise, in order to minimize transportation and production costs. As consumers, there may be telephone, radio, TV users, students, voters, irrigated areas, patients for diagnosis and many other practically important problems.
However, little attention was paid to the account of the nonlinearity of the functional of total production and transportation costs. This article presents practical production and economic problems, which were first studied in such an arrangement that allows more adequate simulation of real processes mentioned.
To solve the infinite-dimensional nonlinear problems of enterprises arrangement we offered their construction in a mathematical formulation to continuous nonlinear problems of optimal division of sets with arrangement of centers of subsets with constraints in form of equalities and inequalities, and applied previously proposed by the author methods and algorithms and software implementation of NZORM. Using NZORM, we obtained numerical solutions and graphical visualization of the results of these problemsReferences
- Alexander, M. N. Effect of Population Mobility on the Location of Communal Shelters [Текст] / Michael N. Alexander, J. Brooks Ferebee, Paul J. Grim [etc.] // Operations Research. — 1958. — Vol. 6, No 2. — P. 207—231.
- Bollabas, B. The Optimal Arrangement of Producers [Текст] / B. Bollabas // Journal of the London Mathematical Society. — 1973. — Vol. 6, No 4. — P. 605—613.
- Chen, R. Relaxation Methods for the Solution of the Minimax Location-Allocation Problem in Euclidean Space [Текст] / R. Chen, G. Y. Handler // Naval Research Logistics. — 1987. — Vol. 34., No 6. — Р.775—788.
- Corley, H. W. A Partitioning Problem with Applications in Regional Design [Текст] / H. W. Corley, S. D. Roberts // Operations Research. — 1972. — Vol. 20, No 5. — P. 1010—1019.
- Corley, H. W. Duality Relationships a Partitioning Problem [Текст] / H. W. Corley, S. D. Roberts // SIAM Journal of Applied Mathematics. — 1972. — Vol. 23, No 4. — P. 490—494.
- Durier, R. Continuos Location Theory under Majority Rule [Текст] / R. Durier // Mathematics of Operations Research. — 1989. — Vol. 14, No 2. — P. 258—274.
- Francis, R. L. Sufficient Conditions for some Optimum-Property Facility Design [Текст] / R. L. Francis // Operations Research. — 1967. — Vol. 15, No 3. — Р. 448—466.
- Friedman, M. On the analysis and solution of certain geographical optimal covering problems [Текст] / M. Friedman // Computers & OR. — 1976. — Vol. 3, No 4. — P. 283—294.
- Jandl, H. A continuous Set Covering Problem as a Quasidifferentiable Optimization Problem [Текст] / Н. Jandl, К. Wieder // Optimization. — 1988. — Vol. 19 , No6. — P. 781—802.
- Juel, H. A Localization Property for Facility-Location Problems with Arbitrary Norms [Текст] / Н. Juel, R. Love // Naval Research Logistics. — 1988. — Vol. 35, No 2. — P. 203—207.
- Акимова, И. Я. Применение диаграмм Вороного в комбинаторных задачах [Текст] / И. Я. Акимова // Техническая кибернетика. — 1984. — № 2. — С. 102—109.
- Быховский, М. Л. Кибернетические системы в медицине [Текст]: учеб, пособие / М. Л. Быховский, А. А. Вишневский. ― М. : Наука, 1981. ― 400 с. — (Университетская книга).
- Гольштейн, Е. Г. Задачи линейного программирования транспортного типа [Текст]: учеб, пособие / Е. Г. Гольштейн, Д. Б. Юдин. — М. : Наука, 1969. — 382 с. — (Университетская книга).
- Дунайчук, М.С. Методи та алгоритми розв’язання неперервних нелі-нійних задач оптимального розбиття множин [Текст]: дис. … кандидата фіз.-мат. наук / М.С. Дунайчук. – Д., 2008. — 170 с.
- Дунайчук, М. С. Система NZORM для розв’язання неперервної нелі-нійної задачі оптимального розбиття множин [Текст] / М. С. Дунайчук // Пи-тання прикладної математики i математичного моделювання : збірник наукових праць. — Дніпропетровськ : ДНУ, 2006. — С. 49—61.
- Кісельова, О. М. Про розв’язання неперервної нелінійної задачі оптимального розбиття множини на її неперетинні підмножини із роз-ташуванням їх центрів, із обмеженнями у формі рівностей та нерівностей [Текст] / О. М. Кісельова, М. С. Дунайчук // Питання оптимізації обчислень : міжнар. симп. Інстит. кіберн. ім. В.М. Глушкова НАН України, верес. 2007 р. : праці міжнар. симп. — К., 2007. — С. 126—127.
- Киселёва, Е. М. Нелинейная задача оптимального разбиения с ограничениями [Текст] / Е. М. Киселёва, В. В. Сусидко, С. А. Ус // Методы решения математической физики и обработки данных. — Днепропетровск : ДГУ, 1990. — С. 28—31.
- Киселёва, Е. М. Непрерывные задачи оптимального разбиения мно-жеств: теория, алгоритмы, приложения [Текст]: Монография / Е. М. Кисе-лёва, Н. З. Шор. — К.: Наукова думка, 2005. — 564 с.
- Киселёва, Е. М. Об одной нелинейной модели определения зон обслуживания [Текст] / Е. М. Киселёва, С. А. Ус // Математичне моделювання. — Дніпродзержинськ : ДДТУ, 1998. — № 3. — С. 3—6.
- Киселёва, Е. М. Решение непрерывной нелинейной задачи оптимального разбиения множеств с размещением центров подмножеств для случая выпуклого целевого функционала [Текст] / Е. М. Киселёва, М. С. Дунайчук // Кибернетика и системный анализ. — К. : Институт кибернетики им. В. М. Глушкова НАН України, 2008. — № 2. — С. 134—152.
- Киселёва, Е. М. Свойства оптимальных решений для одной задачи орошения [Текст] / Е. М. Киселёва, И. В. Бейко // Краевые задачи фильтрации. — К. : Ин-т математики АН УССР, 1973. — С. 255—261.
- Кротов, В. Ф. Достаточные условия оптимальности в задачах об оптимальных покрытиях [Текст] / В. Ф. Кротов, С. А. Пиявский // Изв. АН СССР. Техн. кибернетика. — 1968. — № 2. — С. 10—17.
- Мазуров, В. Д. Применение методов теории распознавания образов в оптимальном планировании и управлении [Текст] / В. Д. Мазуров // Тр. ин-та мат. и мех. Уральск. научн. центр. АН СССР. — 1974. — 6, вып. 5. — С. 58—80.
- Миленький, А. В. Классификация сигналов в условиях неопределенности [Текст] / А. В. Миленький. — М. : Сов. радио. — 1975. — 328 с.
- Туев, С. В. Оптимизация сбора и переработки распределенного ре-сурса [Текст] / С. В. Туев // Оптимизация и устойчивость. — М. : ВЦ АН СССР, 1980. — С. 23—31.
- Ус, С. А. Решение одного класса бесконечномерных задач [Текст]: дисс. ... канд. физ.-мат. наук / С.А. Ус. — Х., 1992. — 161 с.
- Шор, Н. З. Методы минимизации недифференцируемых функций и их приложение [Текст] / Н. З. Шор. — К. : Наук. думка, 1979. — 200 с.
- Alexander, M. N., Ferebee J. B., Grim, P. J., Lebow, L. S., Senturia, S. D., & Singleterry, A. M. (1958). Effect of Population Mobility on the Location of Communal Shelters . Operations Research, 6( 2), 207—231. doi: 10.1287/opre.6.2.207.
- Bollabas, B. (1973). The Optimal Arrangement of Producers . Journal of the London Mathematical Society, s2-6 (4), 605—613. doi: 10.1112/jlms/s2-6.4.605.
- Chen, R. and Handler, G. Y. (1987). Relaxation method for the solution of the minimax location-allocation problem in euclidean space. Naval Research Logistics, 34: 775–788. doi: 10.1002/1520-6750(198712)34:6<775::AID-NAV3220340603>3.0.CO;2-N.
- Corley, H. W., & Roberts, S. D. (1972). A Partitioning Problem with Applications in Regional Design . Operations Research, 20(5), 1010—1019. doi: 10.1287/opre.20.5.1010.
- Corley, H. W., & Roberts, S. D. (1972). Duality Relationships a Partitioning Problem. SIAM Journal of Applied Mathematics, 23(4), 490—494. http://dx.doi.org/10.1137/0123052.
- Durier, R. (1989). Continuos Location Theory under Majority Rule . Mathematics of Operations Research, 14( 2), 258—274. doi: 10.1287/moor.14.2.258.
- Francis, R. L. (1967). Sufficient Conditions for some Optimum-Property Facility Design. Operations Research, 15(3), 448—466. doi: 10.1287/opre.15.3.448.
- Friedman, M. (1976). On the analysis and solution of certain geographical optimal covering problems. Computers & OR, 3(4), 283—294.
- Jandl, H., Wieder, К. (1988). A continuous Set Covering Problem as a Quasidifferentiable Optimization Problem . Optimization, 19(6), 781—802. doi: 10.1080/02331938808843392.
- Juel, H., & Love, R. (1988), A localization property for facility-location problems with arbitrary norms. Naval Research Logistics, 35(2), 203–207. doi: 10.1002/1520-6750(198804)35:2<203::AID-NAV3220350205>3.0.CO;2-C.
- Akimova, I. Ya. Application of Voronoi diagrams in combinatorial problems. (1984). Technical Cybernetics, 2, 102—109.
- Bykhovsky, M.L.,& Vishnevsky, A.A. (1981). Сybernetic systems in medicine. Moscow, USSR: Nauka, 400.
- Holstein, E. G., & Yudin, D.B. (1969). Problems of linear programming transport type. Moscow, USSR: Nauka, 382.
- Dunaichuk, M. S. (2008). Methods and algorithms of solving some continuous nonlinear problems of optimal set partition. The dissertation for candidate degree in Physical and Mathematical Sciences, Dnipropetrovsk, Ukraine, 170.
- Dunaichuk, M. S. (2006). NZORM system for solving a continuous nonlinear problem of optimal set partition. Problems of Applied Mathematics and Mathematical modeling. Dnipropetrovsk: National University, 49-61.
- Kiseleva, O. M., & Dunaichuk, M. S. (2007). On the solution of the continuous nonlinear problem of optimal set partition with arrangement of subset centers, with restrictions in the form of equalities and inequalities. Problems of optimization calculations: Intern. symposium of V.M. Glushkov Institute of Cybernetics of NAS of Ukraine. Kyiv, Ukraine, 126-127.
- Kiseleva, E. M., Susidko V. V., & Us, S. A. (1990). Nonlinear optimal partition problem under constraints. Methods for solving mathematical physics and data processing. Dnepropetrovsk: DSU, 28-31.
- Kiseleva, E. M., & Shore, N. Z. (2005). Continuous problems of optimal ser partition: theory, algorithms, applications. Kiev: Naukova Dumka, 564.
- Kiseleva, E. M., & Us, S. A. (1998). A nonlinear model for determining service areas. Mathematical modelling. Dnіprodzerzhinsk: DDTU, 3, 3-6.
- Kiseleva, O. M., & Dunaichuk, M. S. (2008). Solving a continuous nonlinear problem of optimal set partition with arrangement of subsets centers in the case of a convex objective functional. Cybernetics and Systems Analysis. Kyiv: V.M. Glushkov Institute of Cybernetics of NAS of Ukraine, 2, 134 —152.
- Kiseleva, E. M., & Beiko, I. V. (1973). Properties of optimal solutions for the problem of irrigation. Boundary Value Problems filtering. Kyiv: Institute of Mathematics Academy of Sciences of the USSR, 255-261.
- Krotov, V. F., & Piyavsky, V. F. (1968). Sufficient conditions for optimality in problems of optimal coverings. News of the Academy of Sciences of the USSR. Tech. cybernetics, 2, 10-17.
- Mazuovr, V. D. (1974). Application of pattern recognition theory in the optimal planning and management. Works of the Institute of Mathematics and Mechanics of Uralsk Science Center of the Academy of Sciences of the USSR, 6(5), 58-80.
- Milenky, A. V. (1975). Classification of signals under uncertainty. Moscow: USSR radio, 328.
- Tuiev, S. V. (1980). Optimization of the collection and processing of the distributed resource. Optimization and stability. Moscow: Computing Center of the USSR Academy of Sciences, 23-31.
- Us, S. A. (1992). Solving of a class of infinite-dimensional problems. The dissertation for candidate degree in Physical and Mathematical Sciences. Kharkiv, Ukraine, 161.
- Shore, N. Z. (1979). Minimization Methods for non-differentiable functions and their application. Kiev: Naukova Dumka, 200.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2014 Марина Сергіївна Сазонова
This work is licensed under a Creative Commons Attribution 4.0 International License.
The consolidation and conditions for the transfer of copyright (identification of authorship) is carried out in the License Agreement. In particular, the authors reserve the right to the authorship of their manuscript and transfer the first publication of this work to the journal under the terms of the Creative Commons CC BY license. At the same time, they have the right to conclude on their own additional agreements concerning the non-exclusive distribution of the work in the form in which it was published by this journal, but provided that the link to the first publication of the article in this journal is preserved.
A license agreement is a document in which the author warrants that he/she owns all copyright for the work (manuscript, article, etc.).
The authors, signing the License Agreement with TECHNOLOGY CENTER PC, have all rights to the further use of their work, provided that they link to our edition in which the work was published.
According to the terms of the License Agreement, the Publisher TECHNOLOGY CENTER PC does not take away your copyrights and receives permission from the authors to use and dissemination of the publication through the world's scientific resources (own electronic resources, scientometric databases, repositories, libraries, etc.).
In the absence of a signed License Agreement or in the absence of this agreement of identifiers allowing to identify the identity of the author, the editors have no right to work with the manuscript.
It is important to remember that there is another type of agreement between authors and publishers – when copyright is transferred from the authors to the publisher. In this case, the authors lose ownership of their work and may not use it in any way.