Methods to ensure stability of control systems based on pi and pid controllers

Authors

  • Юрій Михайлович Ковриго National Technical University of Ukraine "Kyiv Polytechnic Institute" 37 Prospect Peremogy, Kyiv, Ukraine, 03056, Ukraine
  • Тарас Григорович Баган National Technical University of Ukraine "Kyiv Polytechnic Institute" 37 Prospect Peremogy, Kyiv, Ukraine, 03056, Ukraine
  • Олександр Сергійович Бунке National Technical University of Ukraine "Kyiv Polytechnic Institute" 37 Prospect Peremogy, Kyiv, Ukraine, 03056, Ukraine

DOI:

https://doi.org/10.15587/1729-4061.2013.14740

Keywords:

Control, regulator, stability, robustness, automation, dynamic adjustment, IMC

Abstract

In the real operation of automation systems, there is not a model that would describe without simplifications the behavior of the control object. Most technological objects are described by complex differential equations that cannot in practice precisely adjust a regulator, and can only get approximate parameters. The purpose of the research is a synthesis of the regulator, which would provide the set parameters of transient processes, irrespective of model errors or changes of equipment parameters during the process.

The article proposes the method of dynamic adjustment, which uses 2-channel structure: the main channel is responsible for system performance and the channel of adjustment compensates the excessive signal of the control effect, ensuring the sustainability of ACP in the final section of the transient process, which allows using the forced adjustments of the main channel.

The advantages of the regulator with internal structure are considered, the stability of closed-loop system is achieved by selecting a resistant IC regulator. As an estimation of an error of the adjustment, the H ∞-norm was taken. In a system with the IMC-H ∞ regulator the performance of transients are directly dependent on the parameters of the regulator, which makes its adjustment very easy-to-use.

The article proposed structural and algorithmic solutions for provision of a given operation quality of control systems. On the example of ACP of temperature of pulverized air-mixture, we conducted simulation and comparative analysis of the main indicators of quality of functioning of regulators. The use of these techniques allows sufficient stability while maintaining performance and other indicators of quality of the system operation throughout the operating range of load of the control object

Author Biographies

Юрій Михайлович Ковриго, National Technical University of Ukraine "Kyiv Polytechnic Institute" 37 Prospect Peremogy, Kyiv, Ukraine, 03056

Ph.D., professor
Automation of heat-and-power engineering processes department

Тарас Григорович Баган, National Technical University of Ukraine "Kyiv Polytechnic Institute" 37 Prospect Peremogy, Kyiv, Ukraine, 03056

senior Lecturer
Automation of heat-and-power engineering processes department

Олександр Сергійович Бунке, National Technical University of Ukraine "Kyiv Polytechnic Institute" 37 Prospect Peremogy, Kyiv, Ukraine, 03056

PhD student, assistant
Automation of heat-and-power engineering processes department

References

  1. O’Dwyer, A. Handbook of PI and PID controller tuning rules – 3rd ed [Текст] / A. O’Dwyer. – London : Imperial College Press, 2010. – 623 p.
  2. Rivera, D.E. Internal model control. PID controller design [Текст] / D.E. Rivera, M. Morari, S. Skogestad – Ind. Eng. Chem. Res. 25, 1986. – Р. 252–265.
  3. Skogestad, S. Simple analytic rules for model reduction and PID controller tuning [Текст] / S. Skogestad // Journal of Process Control. – 2003. – № 13. – P. 291–309.
  4. Shinskey, F.G. Process Control Systems: Application, Design, and Tuning. 3rd edn [Текст] / F.G. Shinskey. – McGraw-Hill, New York, 1988. – 376 p.
  5. Morari, M. Robust Process Control [Текст] / M.Morari, E. Zafiriou – Prentice Hall, Englewood Cliffs, N. Jersey, 1989. – 479 p.
  6. Aström, K.J. Automatic tuning of simple regulators with specifications on phase and amplitude margin [Текст] / K.J. Aström, T. Hägglund // Automatica 20. – 1984. – Р. 645–651.
  7. Ковриго, Ю.М. Методика налаштування Н∞-ПІД регулятора для об’єктів із запізнюванням [Текст] / Ю.М. Ковриго, Т.Г. Баган // Наукові вісті НТУУ "КПІ", Київ. – 2013. – № 1. – C. 12–17.
  8. Хобін, В.А. Регулятор змінної структури для побутови ефективних робастних автоматичних систем [Текст] / В. А. Хобін, О.І. Парамонов // Журн. Одес. держ. акад. харч. техн. – 1997. – №17. – С. 241–248.
  9. Ковриго, Ю.М. Модернизация системы управления тепловой нагрузкой прямоточного котлоагрегата ТЭС с использованием динамического корректора [Текст] / Ю. М. Ковриго, М. А. Коновалов, А. С. Бунке. // Теплоэнергетика – 2012. – №10. – С. 43–49.
  10. Еремин, Е.Л. Адаптивное и робастное управление объектами теплоенергетики [Текст] / Е.Л. Еремин, Д.А. Теличенко – Благовещенск: Амурский гос. ун-т, 2009. – 228 с.
  11. O’Dwyer A. (2010). Handbook of PI and PID controller tuning rules – 3rd ed. Imperial College Press, 623.
  12. Rivera D.E., Morari M., Skogestad S. (1986) Internal model control. PID controller design – Ind. Eng. Chem. Res. 25, 252–265.
  13. Skogestad S. (2003). Simple analytic rules for model reduction and PID controller tuning. Journal of Process Control, № 13, 291–309.
  14. Shinskey F.G. (1988). Process Control Systems: Application, Design, and Tuning. 3rd edn. McGraw-Hill, New York, 376.
  15. Morari M., Zafiriou E. (1989). Robust Process Control. Prentice Hall, Englewood Cliffs, N. Jersey, 479.
  16. Aström K.J., Hägglund T. (1984). Automatic tuning of simple regulators with specifications on phase and amplitude margin. Automatica 20, 645–651.
  17. Kovrygo Y.M., Bahan T.H. (2013). Method of design H∞-PID-controler for objects with delay. Naukovi visti NTUU "KPI", Kyiv, № 1, 12–17.
  18. Khobin V., Paramonov O. (1997). Variable structure controller for creation of robust automatic effective systems. Journal of Odessa State Academy of Food Technologies, 17, 241–248.
  19. Kovryho Yu., Konovalov M., Bunke A. (2012). Modernizing the Heat Load Control System of a Once Through Boiler Unit at a Thermal Power Station Using a Dynamic Corrector. Teploenergetika, 10, 43–49.
  20. Eremin E.L., Telichenko D.A. (2009). Adaptive and robust control for objects termal energy. Publishing house Amursky university, 228.

Published

2013-06-20

How to Cite

Ковриго, Ю. М., Баган, Т. Г., & Бунке, О. С. (2013). Methods to ensure stability of control systems based on pi and pid controllers. Eastern-European Journal of Enterprise Technologies, 3(3(63), 58–63. https://doi.org/10.15587/1729-4061.2013.14740

Issue

Section

Control systems