Post-graduate student Department of Computer Tecnologies in Automatics and Control Systems Mathematical modelling of diffusion processes in the shale gas extracting technology realization

Authors

  • Андрій Петрович Олійник Ivano-Frankivsk National Tehnical University of Oil and Gas Karpatska, 15, Ivano-Frankivsk, 76019, Ukraine
  • Лідія Омелянівна Штаєр Ivano-Frankivsk National Tehnical University of Oil and Gas Karpatska, 15, Ivano-Frankivsk, 76019, Ukraine
  • Оксана Ігорівна Клапоущак Ivano-Frankivsk National Tehnical University of Oil and Gas Karpatska, 15, Ivano-Frankivsk, 76019, Ukraine

DOI:

https://doi.org/10.15587/1729-4061.2013.14744

Keywords:

Shale gas, diffusion, equations of mathematical physics, stability of calculations, sweep method, concentration

Abstract

The article studies the problem of evaluation of the penetration of substances into the environment during implementation of technology of shale gas extraction, as well as the current state of research in this area. A mathematical model of diffusion based on two-dimensional unsteady diffusion equation in Cartesian coordinate system, taking into account a variable diffusion coefficient, initial and boundary conditions that take into account features of the technology of shale gas extraction. A numerical method of the model realization based on the method of variable directions was suggested. The stability of corresponding difference schemes using spectral characteristics of stability was studied.

The method of mathematical formalization of boundary conditions that permit to simulate various intensities and duration of emissions was suggested. A numerical algorithm for solving the problem was developed and its implementation was carried out in the form of complex applications. For the model parameters test calculations were performed that showed correspondence of simulation results with the actual physical picture of the process. The geometric characteristics of the zone of penetration of substances in the test environment were determined. The features of filtration of substances with the variable diffusion coefficient in a region and the various intensity of substances emission were studied. The value of the zone of emission of substances in the studied model area was assessed, the directions for future research were determined

Author Biographies

Андрій Петрович Олійник, Ivano-Frankivsk National Tehnical University of Oil and Gas Karpatska, 15, Ivano-Frankivsk, 76019

Doctor of technical science, Assistant of Professor

Department of Computer Tecnologies in Automatics and Control Systems

Лідія Омелянівна Штаєр, Ivano-Frankivsk National Tehnical University of Oil and Gas Karpatska, 15, Ivano-Frankivsk, 76019

Сandidatе of technical scince

Department of Computer Tecnologies in Automatics and Control Systems

Оксана Ігорівна Клапоущак, Ivano-Frankivsk National Tehnical University of Oil and Gas Karpatska, 15, Ivano-Frankivsk, 76019

Post-graduate student

Department of Computer Tecnologies in Automatics and Control Systems

References

  1. Гарилов Т. Г. Моделирование процесса гидроразрыва пласта в породоупругой среде [Текст] / Т. Г. Гаврилов // Математическое моделирование. – 2006. – Т.18, №6. – С. 53-69.
  2. Городецкая Н. С. Волны в пористо-упругих насыщенных жидкостью средах [Текст] / Н. С. Городецкая // Акустический весник. – 2007. – Т.10, №2. – С. 46-63.
  3. Карев В. М. Механика гидрогазоимпульсного воздействия на трещиновато-пористую породу при скважинной гидродобыче [Текст] / В. И. Карев, Ю. Ф. Коваленко, В. Н. Одинцев // Физико-технические проблемы разработки полезных ископаемых. – 1995. – №6. – С. 70-83.
  4. Пучков Л. А. Извлечение метана из угольных пластов [Текст] / Л. А. Пучков. – М: Из-во МГТУ. – 2002. – 383 с.
  5. Фізико-хімічна геотехнологія: навч. посібник [Текст] / М. М. Табаченко, О. Б. Владико, О. Є. Хоменко, Д. В. Мальцев. – Д.: Національний гірничий університет, 2012. – 310 с.
  6. Boger C. Production gas from its source. Oilfield Review [Текст] / Boger C., Kieschnick I., Lewis R. E. Waters G. – Autumn 2006, – Р. 36-49.
  7. Zhao C. Finite element modeling of methane gas / Migration in coal seams [Текст] / C. Zhao, S. Villiappan // Computers and structures. – 1995. – V.55, №4. – P. 625-629.
  8. Rice J. R. Some basic stress-diffusion solutions for fluid-saturated elastic porous media with compressible constituents [Текст] / J. R. Rice, M. P. Cleary // Reviews of Geophysics and Space Physics. – 1992. – №14. – Р. 227-241.
  9. Задачі термодифузії та методи їх розв'язку [Текст] / під ред. д.т.н. В. П. Ляшенко.– Кременчук: КНУ ім. М. Остроградського, 2012.– 112 с.
  10. Булгаков В. К. Моделирование горения полимерных материалов [Текст] / В. К. Булгаков, В. И. Кодолов, А. М. Липанов. – М:Химия, 1990. – 240 с.
  11. Дьяченко В. Ф. Основные понятия вычислительной математики [Текст] / В. Ф. Дьяченко. – М: Наука, 1977. – 128 с.
  12. Garilov T.G. (2006). The modeling of hydraulic fracture in poroelastic medium. Matematical modeling, 18(6), 53-69.
  13. Gorodetskaja N.S. (2007) Waves in the liquid saturated poroelastic media Acoustic bulletin, – 10(2), 46-63.
  14. Karev V.M., Kovalenko U.F., Odintsev V.N. (1995) Hydro-mechanical effects on the gas-impulse fractured-porous rock with hydraulic borehole. The physics and technical problems of the mineral resources development, №6, 70-83.
  15. Puchkov L.A. (2002) The methane extraction from the coal seams. Moscow, Russia: Moscow State Technical University.
  16. Tabachenko M.M and others. (2012) Physics and Chemistry Geotechnology. Manual – Dnipropetrovsk: National Mining University.
  17. Boger C., Kieschnick I., Lewis R. E. Waters G. (2006) Production gas from its source. Oilfield Review, Autumn 2006, 36-49.
  18. Zhao C., Villippan S. (1995) Finite element modeling of methane gas / Migration in coal seams, Computers and structures. 55(4), 625-629.
  19. Rice J. R., Cleary M.P. (1992) Some basic stress-diffusion solutions for fluid-saturated elastic porous media with compressible constituents, Reviews of Geophysics and Space Physics, (14), 227-241.
  20. Thermal diffusion problems and solution methods (editor Ljashenko V.P.) (2012). Kremenchuk : National State University named after M. Ostrogradskij.
  21. Bulgakov V.K., Kodolov V.I., Lipanov A.M. (1990) The polymeric materials combustions modeling. Moscow: Chemistry.
  22. Dijachenko V.F. (1997) The basic concepts of computational mathematics. Moscow: Nauka.

Published

2013-06-20

How to Cite

Олійник, А. П., Штаєр, Л. О., & Клапоущак, О. І. (2013). Post-graduate student Department of Computer Tecnologies in Automatics and Control Systems Mathematical modelling of diffusion processes in the shale gas extracting technology realization. Eastern-European Journal of Enterprise Technologies, 3(4(63), 9–13. https://doi.org/10.15587/1729-4061.2013.14744

Issue

Section

Mathematics and Cybernetics - applied aspects