Markov model of unsteady flow elimination of accidents in restrictions on the performance of the operator

Authors

  • Ігор Володимирович Наумейко Kharkiv National University of Radio Electronics Lenina 14, Kharkov, Ukraine, 61166, Ukraine
  • Разі Джабур Аль-Азаві Kharkiv National University of Radio Electronics Lenina 14, Kharkov, Ukraine, 61166, Ukraine
  • Валід Ахмед Альрефаі Kharkiv National University of Radio Electronics Lenina 14, Kharkov, Ukraine, 61166, Ukraine

DOI:

https://doi.org/10.15587/1729-4061.2013.14748

Keywords:

Markov chain, Kolmogorov differential equations, the maximum entropy, ergodic, disasters, Erlang

Abstract

The actual problem of simulating the operation of the "Man-Machine-Environment" system, that is the process of the object recovery after the environmental disaster is considered, provided the recovery is made by one of its sub-systems, that include humans. The model differs significantly from the classical theory of reliability. The work is devoted to modeling of multi-step restoration process of an arbitrary nature object with non-stationary Poisson stream of events (accidents) and exponential intensity of recovery process. It passes a fixed finite sequence of phases - the states and is described by the Kolmogorov probabilities for these states. The cases of ergodic and absorbing chains with continuous time are considered. Some of the states in the chain indicate the efficiency of the operator in elimination the accident. It is assumed that the efficiency of the operator can not recover during the process of eliminating accidents. According to the verbal descriptions of the object, graphs of states are drawn, and in accordance to them – the Kolmogorov equations and their stationary solutions. The resulting figures of numerical solutions allow us to determine the time of the process stabilization. For actual input data the following resulting probabilities are obtained: for trouble-free operation of the facility, for a fatal accident and for disaster recovery

Author Biographies

Ігор Володимирович Наумейко, Kharkiv National University of Radio Electronics Lenina 14, Kharkov, Ukraine, 61166

PhD, Associate Professor

Department of Applied Mathematics

 

Разі Джабур Аль-Азаві, Kharkiv National University of Radio Electronics Lenina 14, Kharkov, Ukraine, 61166

Postgraduate

Department of Applied Mathematics

Валід Ахмед Альрефаі, Kharkiv National University of Radio Electronics Lenina 14, Kharkov, Ukraine, 61166

Postgraduate

Department of Applied Mathematics

References

  1. Дзюндзюк Б.В. Структуры и типы моделей систем "человек–машина–среда" [Текст] / Б.В. Дзюндзюк, И.В. Наумейко, Н.Н. Сердюк, Т.Е. Стыценко // Автоматизированные системы управления и приборы автоматики - Харьков 2007 вып. 138. С. 47-50.
  2. Наумейко И.В. Марковские модели систем "человек - машина - среда" [Текст] / И.В. Наумейко, Н.Н. Сердюк // Электроника и информатика, Харьков, 2005, вып. 4
  3. Наумейко И.В. Модели систем «Человек-Машина-Среда» с восстановлением при неклассических потоках событий [Текст] / И.В. Наумейко, Р. Дж. Аль-Азави // Восточно-Европейского журнала передовых технологий- Харьков 2013 г, № 210(62) ,С. 55-58.
  4. Наумейко И.В. Еще одна динамическая модель марковской системы человек-машина-среда, на которую действуют вредные факторы [Текст]/ И.В. Наумейко, Р.Дж. Аль-Азави // Харьков, Радиотехника 2013 (в печати).
  5. Al-Azawi R. J. A dynamic model of Markovian Human-Machine-Environment system that is effected by some hazard [Текст]/ R. J. Al-Azawi //Инновационный потенциал украинской науки - ХХI век, Харьков апреля 2013 г, , вып. 20 (в печати).
  6. Севастьянов Б.А. Формулы Эрланга в телефонии при произвольном законе распределения длительности разговора [Текст]/ Б.А. Севастьянов// Труды III Всесоюзного математического съезда. Т.IV М.: АН СССР, 1959
  7. Хинчин А. Я. Работы по математической теории массового обслуживания [Текст]/ А. Я. Хинчин// Под редакцией Б. В. Гнеденко. – М.: Физматгиз, 1963, 236 с.
  8. Ивченко Г.И. Теория массового обслуживания [Текст]/ Г.И. Ивченко, В.А. Каштанов , И.Н. Коваленко // Высшая школа, 1982, 256 с.
  9. Беккенбах Э. Неравенства [Текст]/ Э. Беккенбах, Р. Беллман. // Мир, 1965.
  10. Самойленко А.М. Дифференциальные уравнения [Текст]/ А.М. Самойленко //Высшая школа, 1989, 383 с.
  11. Dzyundzyuk B.V., Naumeyko I.V. , Serduk N., Stytsenko I.E. (2007). Structure and types of system models "man-machine-environment" .Automated Control Systems and Devices - Kharkov MY. 138. P. 47-50.
  12. Naumeyko I.V., Serduk N. (2005).Markov model system "man - machine - environment" . Electronics and Computer Science, Kharkov, vol. 4.
  13. Naumeyko I.V., Al-Azawi R.J. (2013). Model systems "Man-Machine-Environment" with the recovery in the non-classical event streams .East European Journal of advanced technology, Kharkov, № 2 10(62) ,P. 55-58. .
  14. Naumeyko I.V., Al-Azawi R.J. (2013). Another dynamic model of Markovian Human-Machine-Environment system that is effected by some hazard . Radio Engineering, № 172, Kharkov (in press).
  15. Al-Azawi R. J. (2013). A dynamic model of Markovian Human-Machine-Environment system that is effected by some hazard . conference :Innovation Potential of Ukrainian science - the twenty-first century, Kharkiv, Vol. 20 (in press).
  16. Sevastyanov B.A. (1959). Erlang formula in telephone for an arbitrary distribution law for the duration of a call . Proceedings of the III All-Union Mathematical Congress. T.IV Moscow: USSR Academy of Sciences.
  17. Khinchin A.Y. (1963). work on the mathematical theory of queuing .Edited by Gnedenko. Moscow: Fizmatgiz, p. 236 .
  18. Ivchenko G.I., Chestnuts V.A., Kovalenko I.N. (1982). Queueing theory . High School, 256 p.
  19. Beckenbach E., Bellman R. (1965). Inequalities. World .
  20. Samojlenko A.M. (1989). Differential equations . High School, 383 p.

Published

2013-06-20

How to Cite

Наумейко, І. В., Аль-Азаві, Р. Д., & Альрефаі, В. А. (2013). Markov model of unsteady flow elimination of accidents in restrictions on the performance of the operator. Eastern-European Journal of Enterprise Technologies, 3(4(63), 20–23. https://doi.org/10.15587/1729-4061.2013.14748

Issue

Section

Mathematics and Cybernetics - applied aspects