The method of the joint approximation for solving the multi-dimensional quasi-linear hyperbolic equations
DOI:
https://doi.org/10.15587/1729-4061.2013.14768Keywords:
Method of the joint approximation, finite difference scheme, high order of accuracyAbstract
In present paper the method of the joint approximation for constructing high order of accuracy finite difference schemes is extended on the case of multidimensional quasi-linear hyperbolic equations. The new two-step cost-effective way for constructing compact cost-effective finite difference schemes with unlimited order of accuracy is suggested. This approach is based on the method of the joint approximation and one property of the hyperbolic partial derivatives equations. Finite difference schemes up to seventh order of temporal and spatial accuracy for the two-dimensional linear transport equation and the two-dimensional Burgers equation are presented. Results of the solution of the used widely test cases are presented also. The data of the calculations confirm the theoretical resultsReferences
- Encyclopedia of Computational Mechanics Volume 1 Fundamentals [Текст] / Editors Erwin Stein, Rene de Borst, Thomas J. R. Hughes – WILEY, 2004. – 798 p.
- Drikakis D. Rider W. High-Resolution Methods for Incompressible and Low-Speed Flows – Springer-Verlag Berlin Heidelberg, 2005 – 622 p.
- Самарский, А. А. Теория разностных схем. Учебное пособие [Текст] / Самарский А.А. – М.: Наука, Главная редакция физико-математической литера-туры, 1980. – 616 с.
- Бучарский, В.Л. Метод совместной аппроксимации построения разност-ных схем для решения уравнений в частных производных [Текст] / В.Л. Бучар-ский // Техническая механика. – 2007. – № 1. – с. 50 – 57.
- Бучарский, В.Л. Симметричные разностные схемы метода совместной аппроксимации для решения линейного уравнения переноса [Текст] / В.Л. Бу-чарский, Е.М Калинчук // Математичні машини і системи. – 2011. – №4. – с. 161-165.
- Бучарский, В. Л. Двухшаговые разностные схемы метода совместной аппроксимации для решения квазилинейных одномерных гиперболических уравнений [Текст] / В.Л. Бучарский // Восточно-Европейский журнал передо-вых технологий. – 2013. – №2/4 (62). – с. 34-38.
- Акивис, М.А. Тензорное исчисление: Учеб. пособие [Текст] /Акивис М.А., Гольдберг В.В. – М.:ФИЗМАТЛИТ, 2003. – 304 с.
- Shokin Y.I. The Method of Differential Approximation / Shokin Y.I. – Sprin-ger-Verlag Berlin And Heidelberg Gmbh & Co. – 1983. – 224р.
- Shu, C.-W. Efficient implementation of essentially non-oscillatory shock cap-turing schemes [Текст] / C.-W. Shu, S.Osher // J. Comp. Phys. – 1988. – v.77. – p.439-471.
- Qiu, J. Finite-difference WENO schemes with Lax-Wendroff-type time dis-cretizations [Текст] / J. Qiu, C.-W. Shu // SIAM J.Sci.Comput. – 2003. – v.24. – №6. – p.2185-2198.
- Qiu, J. Hermite WENO schemes with Lax-Wendroff type time discretizations for Hamilton-Jacobi equations [Текст] / J. Qiu // Journal of Computa-tional Mathematics. – 2007. – v.25 – p.131-144.
- Encyclopedia of Computational Mechanics Volume 1 Fundamentals (2004): WILEY
- Drikakis D. Rider W. (2005). High-Resolution Methods for Incompressible and Low-Speed Flows. Springer-Verlag Berlin Heidelberg.
- Samarskyi A.A. (1980) The theory of difference schemes. Мoskow, USSR: Nauka
- Bucharskyi, V.L. (2007) The method of joint approximation for constructing the finite difference schemes for solving partial derivative equations Tehnicheskaya mekhanika, 1, 50 – 57.
- Bucharskyi V.L., Kalinchuk Е.M. (2011) Symmetrical difference schemes of the joint approximation for solving the linear transport equations Matematychni ma-shyny i sistemy, 4, 161-165.
- Bucharskyi, V.L. (2013) Two-step finite difference schemes of the method of the joint approximation for solving the quasi-linear one-dimensional hyperbolic equa-tions. Eastern-European Journal of Enterprise Technologies, 2/4 (62), 34-38
- Akivis, M. A., Goldberg V.V. (2003) Tensor Calculus. Moskow: FIZMATLIT.
- Shokin Y.I. (1983) The Method of Differential Approximation. Springer-Verlag Berlin And Heidelberg Gmbh & Co.
- Shu C.-W., Osher S. (1988) Efficient implementation of essentially non-oscillatory shock capturing schemes J. Comp. Phys., 77, 439-471.
- Qiu J., Shu C.-W. (2003) Finite-difference WENO schemes with Lax-Wendroff-type time discretizations SIAM J.Sci.Comput, 24(6), 2185-2198.
- Qiu J. (2007) Hermite WENO schemes with Lax-Wendroff type time discretizations for Hamilton-Jacobi equations Journal of Computational Mathemat-ics, 25, 131-144.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2014 Валерий Леонидович Бучарский
This work is licensed under a Creative Commons Attribution 4.0 International License.
The consolidation and conditions for the transfer of copyright (identification of authorship) is carried out in the License Agreement. In particular, the authors reserve the right to the authorship of their manuscript and transfer the first publication of this work to the journal under the terms of the Creative Commons CC BY license. At the same time, they have the right to conclude on their own additional agreements concerning the non-exclusive distribution of the work in the form in which it was published by this journal, but provided that the link to the first publication of the article in this journal is preserved.
A license agreement is a document in which the author warrants that he/she owns all copyright for the work (manuscript, article, etc.).
The authors, signing the License Agreement with TECHNOLOGY CENTER PC, have all rights to the further use of their work, provided that they link to our edition in which the work was published.
According to the terms of the License Agreement, the Publisher TECHNOLOGY CENTER PC does not take away your copyrights and receives permission from the authors to use and dissemination of the publication through the world's scientific resources (own electronic resources, scientometric databases, repositories, libraries, etc.).
In the absence of a signed License Agreement or in the absence of this agreement of identifiers allowing to identify the identity of the author, the editors have no right to work with the manuscript.
It is important to remember that there is another type of agreement between authors and publishers – when copyright is transferred from the authors to the publisher. In this case, the authors lose ownership of their work and may not use it in any way.