Universal multifunctional device for heat and mass exchange processes during organic raw material processing

Authors

DOI:

https://doi.org/10.15587/1729-4061.2018.148443

Keywords:

universal processing, organic products, multi-operability, farming enterprises, resource efficiency, flexible film resistive electric heater

Abstract

The proposed innovative design solution of universal multifunctional device ensures implementation of the maximum number of heat exchange processes. They are: aging, drying, blanching, boiling, boiling soft, infusion, mixing, dissolution and partial extraction. Combination of main heat and mass exchange processes in a single device ensures its technological multioperationality and mobility, due to its location on a mobile platform. On the platform, there are: an engine section; a central support for fixing of the operation technological capacity; a section with a steam generator and a vacuum pump, technical lines. A block with automation tools controls the main operation parameters: speed of rotation of the shaft of the mixer; heating temperature; steam pressure and vacuum pressure is used block with automation. There is also an auxiliary technical retractable lifting rail with a rotating mechanism for unloading and loading of the capacity installed.

The structural solution of the multifunctional device ensures a use of replaceable section-modular elements. Heating of the technological capacity occurs due to a flexible radiating resistive electric heater of the radiating type, which ensures that the device reaches the operation mode in 1.5 minutes, an ease of maintenance and reduction of the metal capacity of the structure.

We established that the universal multifunctional device provides a reduction in duration of heat exchange processes during its approbation. Namely: aging of organic raw materials by 22 %, blanching ‒ by 25 %, extraction ‒ by 21 %, boiling ‒ by 32 %, drying ‒ by 13 %, infusion ‒ by 43 % and dissolution of the fine dispersed fraction ‒ by 20 %. The cost per unit expended on heating of a unit of product is less by 10 % and 19 % compared to UPTODS-150 and KVM-150 caldron, respectively. This confirms the effectiveness of the accepted innovative solution to ensure mobility, energy and resource efficiency, ease of operation and maintenance of the device

Author Biographies

Aleksey Zagorulko, Kharkiv State University of Food Technology and Trade Klochkivska str., 333, Kharkiv, Ukraine, 61051

PhD, Associate Professor

Department of Processes, Devices and Automation of Food Production

Andrii Zahorulko, Kharkiv State University of Food Technology and Trade Klochkivska str., 333, Kharkiv, Ukraine, 61051

PhD, Senior Lecturer

Department of Processes, Devices and Automation of Food Production

Kateryna Kasabova, Kharkiv State University of Food Technology and Trade Klochkivska str., 333, Kharkiv, Ukraine, 61051

PhD

Department of Technology of Bakery, Confectionary, Pasta and Food Concentrates

Vitalii Chervonyi, Kharkiv State University of Food Technology and Trade Klochkivska str., 333, Kharkiv, Ukraine, 61051

PhD, Associate Professor

Department of equipment for food and hospitality industry named after M. I. Belyaeva

Oleksandr Omelchenko, Donetsk National University of Economics and Trade named after Michael Tugan-Baranowski Tramvayna str., 16, Kryvyi Rih, Ukraine, 50005

PhD

Department of general engineering disciplines and equipment

Sergei Sabadash, Sumy National Agrarian University H. Kondrateva str., 160, Sumy, Ukraine, 40021

PhD, Associate Professor

Department of Engineering Technology of Food Production

Nadiia Zahorko, Tavria State Agrotechnological University B. Khmelnytsky ave., 18, Melitopol, Ukraine, 72312

PhD, Associate Professor

Department of Processing and Food Production Equipment named after professor F. Yalpachik

Oleg Peniov, Tavria State Agrotechnological University B. Khmelnytsky ave., 18, Melitopol, Ukraine, 72312

PhD, Associate Professor

Department of Technology of Construction Materials

References

  1. Shkuratov, O. I., Drebot, O. I., Chudovska, V. A. et. al. (2014). Kontseptsiya rozvytku orhanichnoho zemlerobstva v Ukraini do 2020 roku. Kyiv: TOV «Ekoinvestkom», 16.
  2. Vyrobnytstvo orhanichnoi silhospproduktsiyi ta syrovyny. Ahrobiznes sohodni. Available at: http://agro-business.com.ua/agro/u-pravovomu-poli/item/1858-vyrobnytstvo-orhanichnoi-silhospproduktsii-ta-syrovyny.html
  3. Abramiuk, V. (2013). Perspektyvy rozvytku kharchovoi promyslovosti Ukrainy. Vseukrainska studentska internet-konferentsiya. Available at: http://conf-cv.at.ua/forum/127-1388-1
  4. Marković, M. S., Radosavljević, D. B., Pavićević, V. P., Ristić, M. S., Milojević, S. Ž., Bošković-Vragolović, N. M., Veljković, V. B. (2018). Influence of common juniper berries pretreatment on the essential oil yield, chemical composition and extraction kinetics of classical and microwave-assisted hydrodistillation. Industrial Crops and Products, 122, 402–413. doi: https://doi.org/10.1016/j.indcrop.2018.06.018
  5. Telezhenko, L. N., Bezusov, A. T. (2004). Biologicheski aktivnye veshchestva fruktov i ovoshchey: sohranenie pri pererabotke. Odessa: Optimum, 268.
  6. Cherevko, O. I., Poperechnyi, A. M. (2002). Protsesy i aparaty kharchovykh vyrobnytstv. Kharkiv: KhDUKhT, 420.
  7. Protses podilu plodiv ta ovochiv na odnoridni za rozmiramy partiyi. Studopediya. Vasha shkolopediya. Available at: http://studopedia.com.ua/1_355784_protses-podilu-plodiv-ta-ovochiv-na-odnoridni-za-rozmirami-partii.html
  8. Hladushniak, O. K. (2015). Tekhnolohichne obladnannia konservnykh zavodiv. Kherson: Hrin D.S., 348.
  9. Mustafina, A. S., Fedyaev, K. S. (2013). Classification of extraction objects. European Science and Technology. Materials of the IV international research and practice conference. Vol. I. Munich, 296–300.
  10. Arancibia-Avila, P., Namiesnik, J., Toledo, F., Werner, E., Martinez-Ayala, A. L., Rocha-Guzmán, N. E. et. al. (2012). The influence of different time durations of thermal processing on berries quality. Food Control, 26 (2), 587–593. doi. doi: https://doi.org/10.1016/j.foodcont.2012.01.036
  11. Adalja, A., Lichtenberg, E. (2018). Implementation challenges of the food safety modernization act: Evidence from a national survey of produce growers. Food Control, 89, 62–71. doi: https://doi.org/10.1016/j.foodcont.2018.01.024
  12. Pogozhikh, M., Pak, A. (2017). The development of an artificial energotechnological process with the induced heat and mass transfer. Eastern-European Journal of Enterprise Technologies, 1 (8 (85)), 50–57. doi: https://doi.org/10.15587/1729-4061.2017.91748
  13. Zahorulko, A. M., Zahorulko, O. Ye. (2016). Pat. No. 108041 UA. Hnuchkyi plivkovyi rezystyvnyi elektronahrivach vyprominiuiuchoho typu. No. u201600827; declareted: 02.02.2016; published: 24.06.2016, Bul. No. 12. URL: http://uapatents.com/5-108041-gnuchkijj-plivkovijj-rezistivnijj-elektronagrivach-viprominyuyuchogo-tipu.html
  14. Kotel vakuumniy KVM. Available at: http://www.agro-mash.ru/280111_kotel_vak_KBM.html
  15. Cherevko, O. I., Afukova, N. O., Kiptela, L. V. (2002). Pat. No. 53975 UA. Prystriy dlia poperednoi teplovoi obrobky dykorosloi syrovyny. No. 2002042926; declareted: 11.04.2002; published: 17.02.2003, Bul. 3.

Downloads

Published

2018-11-27

How to Cite

Zagorulko, A., Zahorulko, A., Kasabova, K., Chervonyi, V., Omelchenko, O., Sabadash, S., Zahorko, N., & Peniov, O. (2018). Universal multifunctional device for heat and mass exchange processes during organic raw material processing. Eastern-European Journal of Enterprise Technologies, 6(1 (96), 47–54. https://doi.org/10.15587/1729-4061.2018.148443

Issue

Section

Engineering technological systems