Compaction of porous powder body consisting of the elasticplastic medium
DOI:
https://doi.org/10.15587/1729-4061.2018.149683Keywords:
loading surface, porous body, resulting equations, iron-cast iron-glass, strain rate, tensor invariant, isotropic materialAbstract
In the development of technological processes of producing cold-pressed sintered parts of low porosity, special attention is paid to the mechanism of density variation. In powder metallurgy, a multicomponent charge consisting of plastic metals, as well as poorly compressible inclusions and compounds, is often used. Such charge can equally be attributed to the charge consisting of iron powder, cast iron and glass. In this charge, the first component (base) is ductile iron, and the other two, cast iron and glass, are elastic components. It is of some interest what kind of compaction can be obtained in this case and what resulting equations can be used to estimate the mechanics of compaction of such a powder charge.
The resulting equations of compaction of porous powder bodies of iron-cast iron-glass are proposed. The analysis of the isotropic, rigid-plastic hardening material such as iron-cast iron-glass is given. When compacting such a material, the rate of energy dissipation (pressing pressure) is determined by the rate of volume and form change of the body. It is shown that the difference between compressed (cast iron and glass) and plastic compacted (iron) materials forms special mechanical properties of the matrix. Consequently, hydrostatic pressure can affect the form change of the body, and shear stresses – volume change. The results of the mathematical approach to obtaining the resulting equations of compaction of the elastic-plastic medium showed the way to build a theory of plasticity of the compacted body, which eliminates the need to take into account the type of loading surface. When accounting the loading surface, it is impossible to obtain universal equations of compaction of the porous elastic-plastic medium. It is shown that to apply the classical formulation of the model of the elastic-plastic compacted body, it is necessary to assume that the loading surface is convex-closed
References
- Nigmatulin, R. I. (1978). Osnovy mekhaniki geterogennyh sred. Moscow: Nauka, 336.
- Fleck, N. A., Kuhn, L. T., McMeeking, R. M. (1992). Yielding of metal powder bonded by isolated contacts. Journal of the Mechanics and Physics of Solids, 40 (5), 1139–1162. doi: https://doi.org/10.1016/0022-5096(92)90064-9
- Shereen Magdy Mehamed (2012). Simulation for elastoplastic powder materials in rigid matrix. Az.T.U. Machine Science, 28, 76–83.
- Mammadov, A. T., Mammadov, V. A. (2012). Phenomenological approach to the plastic deformation of metallic powders in cofinedcavby. ANSA, 1 (9), 67–72.
- Cigler, G. (2006). Eksperimental'nye principy termodinamiki, neobratimyh processov i mekhaniki sploshnoy sredy. Moscow: Mir, 135.
- Zawzur, A., Sbubz, P. (2008). Onformulationonstress-strainrelationsforsoilsand failure. Z. Angew. Math. Undphys, 19 (5), 770–778.
- Sedov, L. I. (2003). Mekhaniki sploshnoy sredy. Vol. 1, 2. Moscow: Nauka, 492, 568.
- Maximenko, A. L., Van Der Biest, O. (2001). Modelling of damage development during sintering. Journal of the European Ceramic Society, 21 (8), 1061–1071. doi: https://doi.org/10.1016/s0955-2219(00)00309-5
- Kuhn, H. A., Downey, C. L. (1971). Deformation characteristics and plasticity theory of sintered powder materials. Internal Journal of Powder Netallurgy, 7, 15–25.
- Olevsky, E. A., Maximenko, A Van Der Biest, O. (2002). On-line sintering strength of ceramic composites. International Journal of Mechanical Sciences, 44 (4), 755–771. doi: https://doi.org/10.1016/s0020-7403(02)00005-x
- Pavie, E., Doremus, P. (1999). Triaxial characterisation of iron powder behaviour. Powder Metallurgy, 42 (4), 345–352. doi: https://doi.org/10.1179/003258999665693
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2018 Tahir Jabbarov
This work is licensed under a Creative Commons Attribution 4.0 International License.
The consolidation and conditions for the transfer of copyright (identification of authorship) is carried out in the License Agreement. In particular, the authors reserve the right to the authorship of their manuscript and transfer the first publication of this work to the journal under the terms of the Creative Commons CC BY license. At the same time, they have the right to conclude on their own additional agreements concerning the non-exclusive distribution of the work in the form in which it was published by this journal, but provided that the link to the first publication of the article in this journal is preserved.
A license agreement is a document in which the author warrants that he/she owns all copyright for the work (manuscript, article, etc.).
The authors, signing the License Agreement with TECHNOLOGY CENTER PC, have all rights to the further use of their work, provided that they link to our edition in which the work was published.
According to the terms of the License Agreement, the Publisher TECHNOLOGY CENTER PC does not take away your copyrights and receives permission from the authors to use and dissemination of the publication through the world's scientific resources (own electronic resources, scientometric databases, repositories, libraries, etc.).
In the absence of a signed License Agreement or in the absence of this agreement of identifiers allowing to identify the identity of the author, the editors have no right to work with the manuscript.
It is important to remember that there is another type of agreement between authors and publishers – when copyright is transferred from the authors to the publisher. In this case, the authors lose ownership of their work and may not use it in any way.