Development of a method for computer simulation of a swinging spring load movement path
DOI:
https://doi.org/10.15587/1729-4061.2019.154191Keywords:
pendulum oscillations, periodic paths of movement, swinging spring, Lagrange equation of the second kindAbstract
Studies of geometric modeling of non-chaotic periodic paths of movement of loads attached to a variety of mathematical pendulums were continued. Pendulum oscillations in a vertical plane of a suspended weightless spring which maintains straightness of its axis were considered. In literature, this type of pendulum is called a swinging spring. The sought path of the load of the swinging spring was modeled with the help of a computer using values of the load weight, stiffness of the spring and its length without load. In addition, initial values of oscillation of the swinging spring were used: initial angle of deviation of the spring axis from the vertical, initial rate of change of this angle as well as initial parameter of the spring elongation and initial rate of elongation change. Calculations were performed using Lagrange equation of the second kind. Variants of finding conditionally periodic paths of movement of a point load attached to a swinging spring with a movable fixing point were considered.
Relevance of the topic was determined by necessity of study and improvement of new technological schemes of mechanical devices which include springs, in particular, the study of conditions of detuning from chaotic oscillations of the elements of mechanical structures and determination of rational values of parameters to ensure periodic paths of their oscillation.
A method for finding values of a set of parameters for providing a nonchaotic periodic path of a point load attached to a swinging spring was presented. The idea of this method was explained by the example of finding a periodic path of the second load of the double pendulum.
Variants of calculations for obtaining periodic paths of load movement for the following set parameters were given:
‒ length of the spring without load and its stiffness at an unknown value of the load weight;
‒ length of the spring without load and the value of the load weight at unknown spring stiffness;
‒ value of the load weight and stiffness of the spring at an unknown length of the spring without load.
As an example, determination of the values of a set of parameters to provide a non-chaotic, conditionally periodic path of movement of a point load attached to a swinging spring with a movable attachment point was considered.
Phase paths of functions of generalized coordinates (values of angles of deflection of the swinging spring axis from the vertical and extension of the spring) were constructed with the help of which it is possible to estimate ranges of these values and rates of their variation.
The results can be used as a paradigm for studying nonlinear coupled systems as well as in calculating variants of mechanical devices where springs affect oscillation of their elements when it is necessary to detune from chaotic movements of loads in the technologies using mechanical devices and provide periodic paths of their movementReferences
- De Sousa, M. C., Marcus, F. A., Caldas, I. L., Viana, R. L. (2018). Energy distribution in intrinsically coupled systems: The spring pendulum paradigm. Physica A: Statistical Mechanics and its Applications, 509, 1110–1119. doi: https://doi.org/10.1016/j.physa.2018.06.089
- Vlasov, V. N. Velichayshaya Revolyuciya v Mekhanike 4. Available at: http://www.trinitas.ru/rus/doc/0016/001d/2114-vls.pdf
- Buldakova, D. A., Kiryushin, A. V. (2015). Model of the shaking spring pendulum in the history of physics and equipment. Elektronnoe nauchnoe izdanie «Uchenye zametki TOGU», 6 (2), 238–243.
- Lynch, P. (2001). The swinging spring: a simple model for atmospheric balance. Large-Scale Atmosphere-Ocean Dynamics: Vol. II: Geometric Methods and Models. Cambridge University Press, Cambridge, 50.
- Aldoshin, G. T., Yakovlev, S. P. (2015). Analiticheskaya model' kolebaniy molekuly uglekislogo gaza. Rezonans Fermi. Izv. RAN. MTT, 1, 42–53.
- Zhang, P., Ren, L., Li, H., Jia, Z., Jiang, T. (2015). Control of Wind-Induced Vibration of Transmission Tower-Line System by Using a Spring Pendulum. Mathematical Problems in Engineering, 2015, 1–10. doi: https://doi.org/10.1155/2015/671632
- Castillo-Rivera, S., Tomas-Rodriguez, M. (2017). Helicopter flap/lag energy exchange study. Nonlinear Dynamics, 88 (4), 2933–2946. doi: https://doi.org/10.1007/s11071-017-3422-4
- Bogdanov, K. Yu. (1993). Hishchnik i zhertva. Kvant, 2. Available at: http://kvant.mccme.ru/1993/02/hishchnik_i_zhertva.htm
- Gendelman, O. V. (2001). Transition of Energy to a Nonlinear Localized Mode in a Highly Asymmetric System of Two Oscillators. Normal Modes and Localization in Nonlinear Systems, 237–253. doi: https://doi.org/10.1007/978-94-017-2452-4_13
- Aldoshin, G. T. (2009). Zamechaniya k metodu linearizacii nelineynyh uravneniy s dvumya stepenyami svobody. V sb. «Matematika, informatika, estestvoznanie v ekonomike i obshchestve». Trudy mezhdunarodnoy nauchno-prakticheskoy konferencii. Vol. 1. Moscow: MFYUF.
- Bubnovich, E. V., Moldaganapova, A. G. K voprosu ob issledovanii rezonansov pri vynuzhdennyh vzaimosvyazannyh kolebaniyah gibkoy niti. Available at: http://portal.kazntu.kz/files/publicate/%20Молдаганапова%20.pdf
- Petrov, A. G. (2015). O vynuzhdennyh kolebaniyah kachayushcheysya pruzhiny pri rezonanse. Doklady Akademii nauk, 464 (5), 553–557. doi: https://doi.org/10.7868/s0869565215290113
- Petrov, A. G., Shunderyuk, M. M. (2010). O nelineynyh kolebaniyah tyazheloy material'noy tochki na pruzhine. Izv. RAN. MTT, 2, 27–40.
- Bayly, P. V., Virgin, L. N. (1993). An Empirical Study of the Stability of Periodic Motion in the Forced Spring-Pendulum. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 443 (1918), 391–408. doi: https://doi.org/10.1098/rspa.1993.0152
- Duka, B., Duka, R. (2018). On the elastic pendulum, parametric resonance and “pumping” swings. European Journal of Physics. 2018. doi: https://doi.org/10.1088/1361-6404/aaf146
- Breitenberger, E., Mueller, R. D. (1981). The elastic pendulum: A nonlinear paradigm. Journal of Mathematical Physics, 22 (6), 1196–1210. doi: https://doi.org/10.1063/1.525030
- Dullin, H., Giacobbe, A., Cushman, R. (2004). Monodromy in the resonant swing spring. Physica D: Nonlinear Phenomena, 190 (1-2), 15–37. doi: https://doi.org/10.1016/j.physd.2003.10.004
- Ryland, G., Meirovitch, L. (1977). Stability boundaries of a swinging spring with oscillating support. Journal of Sound and Vibration, 51 (4), 547–560. doi: https://doi.org/10.1016/s0022-460x(77)80051-5
- Holm, D. D., Lynch, P. (2002). Stepwise Precession of the Resonant Swinging Spring. SIAM Journal on Applied Dynamical Systems, 1 (1), 44–64. doi: https://doi.org/10.1137/s1111111101388571
- Lynch, P., Houghton, C. (2004). Pulsation and precession of the resonant swinging spring. Physica D: Nonlinear Phenomena, 190 (1-2), 38–62. doi: https://doi.org/10.1016/j.physd.2003.09.043
- Klimenko, A. A., Mihlin, Yu. V. (2009). Nelineynaya dinamika pruzhinnogo mayatnika. Dinamicheskie sistemy, 27, 51–65.
- Broucke, R., Baxa, P. A. (1973). Periodic solutions of a spring-pendulum system. Celestial Mechanics, 8 (2), 261–267. doi: https://doi.org/10.1007/bf01231426
- Hitzl, D. L. (1975). The swinging spring invariant curves formed by quasi-periodic solution. III. Astron and Astrophys, 41 (2), 187–198.
- Modelirovanie dvizheniya dvoynogo mayatnika v Dekartovoy sisteme koordinat. Available at: https://www.wolfram.com/mathematica/new-in-9/advanced-hybrid-and-differential-algebraic-equations/double-pendulum.html
- The Spring Pendulum (Optional). Available at: http://homepage.math.uiowa.edu/~stroyan/CTLC3rdEd/ProjectsOldCD/estroyan/cd/46/index.htm
- Gavin, H. P. (2014). Generalized Coordinates, Lagrange’s Equations, and Constraints. CEE 541. Structural Dynamics. Department of Civil and Environmental Engineering Duke University, 23.
- Van der Weele, J. P., de Kleine, E. (1996). The order-chaos-order sequence in the spring pendulum. Physica A: Statistical Mechanics and Its Applications, 228 (1-4), 245–272. doi: https://doi.org/10.1016/0378-4371(95)00426-2
- File:Spring pendulum.gif. Available at: https://en.wikipedia.org/wiki/File:Spring_pendulum.gif
- Aldoshin, G. T., Yakovlev, S. P. (2012). Dynamics of a swinging spring with moving support. Vestnik Sankt-Peterburgskogo universiteta. Seriya 1. Matematika. Mekhanika. Astronomiya, 4, 45–52.
- Semkiv, O., Shoman, O., Sukharkova, E., Zhurilo, A., Fedchenko, H. (2017). Development of projection technique for determining the non-chaotic oscillation trajectories in the conservative pendulum systems. Eastern-European Journal of Enterprise Technologies, 2 (4 (86)), 48–57. doi: https://doi.org/10.15587/1729-4061.2017.95764
- Kutsenko, L., Semkiv, O., Asotskyi, V., Zapolskiy, L., Shoman, O., Ismailova, N. et. al. (2018). Geometric modeling of the unfolding of a rod structure in the form of a double spherical pendulum in weightlessness. Eastern-European Journal of Enterprise Technologies, 4 (7 (94)), 13–24. doi: https://doi.org/10.15587/1729-4061.2018.139595
- Kutsenko, L. M. Piksasov, M. M., Zapolskyi, L. L. (2018). Iliustratsiyi do statti "Heometrychne modeliuvannia periodychnoi traiektoriyi vantazhu khytnoi pruzhyny". Available at: http://repositsc.nuczu.edu.ua/handle/123456789/7637
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2019 Leonid Kutsenko, Oleg Semkiv, Andrii Kalynovskyi, Leonid Zapolskiy, Olga Shoman, Gennadii Virchenko, Viacheslav Martynov, Maxim Zhuravskij, Volodymyr Danylenko, Nelli Ismailova
This work is licensed under a Creative Commons Attribution 4.0 International License.
The consolidation and conditions for the transfer of copyright (identification of authorship) is carried out in the License Agreement. In particular, the authors reserve the right to the authorship of their manuscript and transfer the first publication of this work to the journal under the terms of the Creative Commons CC BY license. At the same time, they have the right to conclude on their own additional agreements concerning the non-exclusive distribution of the work in the form in which it was published by this journal, but provided that the link to the first publication of the article in this journal is preserved.
A license agreement is a document in which the author warrants that he/she owns all copyright for the work (manuscript, article, etc.).
The authors, signing the License Agreement with TECHNOLOGY CENTER PC, have all rights to the further use of their work, provided that they link to our edition in which the work was published.
According to the terms of the License Agreement, the Publisher TECHNOLOGY CENTER PC does not take away your copyrights and receives permission from the authors to use and dissemination of the publication through the world's scientific resources (own electronic resources, scientometric databases, repositories, libraries, etc.).
In the absence of a signed License Agreement or in the absence of this agreement of identifiers allowing to identify the identity of the author, the editors have no right to work with the manuscript.
It is important to remember that there is another type of agreement between authors and publishers – when copyright is transferred from the authors to the publisher. In this case, the authors lose ownership of their work and may not use it in any way.