Розробка способу комп’ютерного моделювання періодичної траєкторії переміщення вантажу хитної пружини

Автор(и)

  • Leonid Kutsenko Національний університет цивільного захисту України вул. Чернишевська, 94, м. Харків, Україна, 61023, Україна https://orcid.org/0000-0003-1554-8848
  • Oleg Semkiv Національний університет цивільного захисту України вул. Чернишевська, 94, м. Харків, Україна, 61023, Україна https://orcid.org/0000-0002-9347-0997
  • Andrii Kalynovskyi Національний університет цивільного захисту України вул. Чернишевська, 94, м. Харків, Україна, 61023, Україна https://orcid.org/0000-0002-1021-5799
  • Leonid Zapolskiy Український науково-дослідний інститут цивільного захисту вул. Рибальська, 18, м. Київ, Україна, 01011, Україна https://orcid.org/0000-0003-4357-2933
  • Olga Shoman Національний технічний університет "Харківський політехнічний інститут" вул. Кирпичова, 2, м. Харків, Україна, 61002, Україна https://orcid.org/0000-0002-3660-0441
  • Gennadii Virchenko Національний технічний університет України «Київський політехнічний інститут імені Ігоря Сікорського» пр. Перемоги, 37, м. Київ, Україна, 03056, Україна https://orcid.org/0000-0001-9586-4538
  • Viacheslav Martynov Київський національний університет будівництва і архітектури пр. Повітрофлотський, 31, м. Київ, Україна, 03037, Україна https://orcid.org/0000-0002-0822-1970
  • Maxim Zhuravskij Національний університет цивільного захисту України вул. Чернишевська, 94, м. Харків, Україна, 61023, Україна https://orcid.org/0000-0001-8356-8600
  • Volodymyr Danylenko Національний технічний університет "Харківський політехнічний інститут" вул. Кирпичова, 2, м. Харків, Україна, 61002, Україна https://orcid.org/0000-0003-4952-7498
  • Nelli Ismailova Військова академія вул. Фонтанська дорога, 10, м. Одеса, Україна, 65009, Україна https://orcid.org/0000-0003-0181-4420

DOI:

https://doi.org/10.15587/1729-4061.2019.154191

Ключові слова:

маятникові коливання, періодичної траєкторії руху, хитна пружина, рівняння Лагранжа другого роду

Анотація

Продовжено дослідження геометричного моделювання нехаотичних періодичних траєкторій руху вантажів різновидів математичних маятників. Розглядаються маятникові коливання у вертикальній площині підвішеної невагомої пружини, зберігаючої при цьому прямолінійність своєї осі. В літературі такий вид маятника називають хитною пружиною (swinging spring). Шукана траєкторія вантажу хитної пружини за допомогою комп’ютера моделюється з використанням значень маси вантажу, жорсткості пружини та її довжини в ненавантаженому стані. Крім того, використовуються такі початкові величини параметрів ініціювання коливань хитної пружини: кут відхилення осі пружини від вертикалі, швидкість зміни величини цього кута, а також параметр подовження пружини та швидкість зміни подовження. Розрахунки виконано за допомогою рівняння Лагранжа другого роду. Також розглянуто варіанти знаходження періодичних траєкторій точкового вантажу хитної пружини з рухомою (вздовж координатних осей) точкою кріплення.

Актуальність теми визначається необхідністю дослідження та удосконалення нових технологічних схем механічних пристроїв, до складу яких входять пружини. Зокрема, дослідження умов відмежування від хаотичних коливань елементів механічних конструкцій та визначення раціональних значень параметрів для забезпечення періодичних траєкторій їх коливань.

Наведено спосіб знаходження значень набору параметрів для забезпечення нехаотичної періодичної траєкторії руху точкового вантажу хитної пружини. Ідею способу пояснено на прикладі знаходження періодичної траєкторії руху другого вантажу подвійного маятника.

Наведено варіанти розрахунків для одержання періодичних траєкторії руху вантажу, коли задані параметри:

– жорсткість пружини та її довжина без навантаження, але невідома величина маси вантажу;

– величина маси вантажу та довжина пружини без навантаження, але невідома жорсткість пружини;

– величина маси вантажу та жорсткість пружини, але невідома довжина пружини без навантаження.

Також розглянуто знаходження значень набору параметрів для забезпечення умовно періодичної траєкторії руху точкового вантажу хитної пружини з рухомою точкою кріплення.

Побудовано фазові траєкторії функцій узагальнених координат (значень кутів відхилення осі пружини від вертикалі та подовження хитної пружини) за допомогою яких можна оцінити діапазони зазначених величин та швидкостей їх зміни.

Результати можна використати як парадигму для вивчення нелінійних зв'язаних систем, а також при розрахунках варіантів механічних пристроїв, де пружини впливають на коливання їх елементів. Коли в технологіях використання механічних пристроїв необхідно відмежуватися від хаотичних переміщень вантажів, а забезпечити періодичні траєкторії їх руху

Біографії авторів

Leonid Kutsenko, Національний університет цивільного захисту України вул. Чернишевська, 94, м. Харків, Україна, 61023

Доктор технічних наук, професор

Кафедра інженерної та аварійно-рятувальної техніки

Oleg Semkiv, Національний університет цивільного захисту України вул. Чернишевська, 94, м. Харків, Україна, 61023

Доктор технічних наук, проректор

Кафедра наглядово-профілактичної діяльності

Andrii Kalynovskyi, Національний університет цивільного захисту України вул. Чернишевська, 94, м. Харків, Україна, 61023

Кандидат технічних наук, доцент

Кафедра інженерної та аварій-рятувальної техніки

Leonid Zapolskiy, Український науково-дослідний інститут цивільного захисту вул. Рибальська, 18, м. Київ, Україна, 01011

Кандидат технічних наук, старший науковий співробітник

Науково-організаційний відділ

Olga Shoman, Національний технічний університет "Харківський політехнічний інститут" вул. Кирпичова, 2, м. Харків, Україна, 61002

Доктор технічних наук, професор, завідувач кафедри

Кафедра геометричного моделювання та комп’ютерної графіки

Gennadii Virchenko, Національний технічний університет України «Київський політехнічний інститут імені Ігоря Сікорського» пр. Перемоги, 37, м. Київ, Україна, 03056

Доктор технічних наук, доцент

Кафедра нарисної геометрії, інженерної та комп’ютерної графіки

Viacheslav Martynov, Київський національний університет будівництва і архітектури пр. Повітрофлотський, 31, м. Київ, Україна, 03037

Доктор технічних наук, доцент

Кафедра архітектурних конструкцій

Maxim Zhuravskij, Національний університет цивільного захисту України вул. Чернишевська, 94, м. Харків, Україна, 61023

Кандидат технічних наук

Навчально-методичний відділ

Volodymyr Danylenko, Національний технічний університет "Харківський політехнічний інститут" вул. Кирпичова, 2, м. Харків, Україна, 61002

Доцент

Кафедра геометричного моделювання та комп’ютерної графіки

Nelli Ismailova, Військова академія вул. Фонтанська дорога, 10, м. Одеса, Україна, 65009

Доктор технічних наук, доцент

Кафедра інженерної механіки

Посилання

  1. De Sousa, M. C., Marcus, F. A., Caldas, I. L., Viana, R. L. (2018). Energy distribution in intrinsically coupled systems: The spring pendulum paradigm. Physica A: Statistical Mechanics and its Applications, 509, 1110–1119. doi: https://doi.org/10.1016/j.physa.2018.06.089
  2. Vlasov, V. N. Velichayshaya Revolyuciya v Mekhanike 4. Available at: http://www.trinitas.ru/rus/doc/0016/001d/2114-vls.pdf
  3. Buldakova, D. A., Kiryushin, A. V. (2015). Model of the shaking spring pendulum in the history of physics and equipment. Elektronnoe nauchnoe izdanie «Uchenye zametki TOGU», 6 (2), 238–243.
  4. Lynch, P. (2001). The swinging spring: a simple model for atmospheric balance. Large-Scale Atmosphere-Ocean Dynamics: Vol. II: Geometric Methods and Models. Cambridge University Press, Cambridge, 50.
  5. Aldoshin, G. T., Yakovlev, S. P. (2015). Analiticheskaya model' kolebaniy molekuly uglekislogo gaza. Rezonans Fermi. Izv. RAN. MTT, 1, 42–53.
  6. Zhang, P., Ren, L., Li, H., Jia, Z., Jiang, T. (2015). Control of Wind-Induced Vibration of Transmission Tower-Line System by Using a Spring Pendulum. Mathematical Problems in Engineering, 2015, 1–10. doi: https://doi.org/10.1155/2015/671632
  7. Castillo-Rivera, S., Tomas-Rodriguez, M. (2017). Helicopter flap/lag energy exchange study. Nonlinear Dynamics, 88 (4), 2933–2946. doi: https://doi.org/10.1007/s11071-017-3422-4
  8. Bogdanov, K. Yu. (1993). Hishchnik i zhertva. Kvant, 2. Available at: http://kvant.mccme.ru/1993/02/hishchnik_i_zhertva.htm
  9. Gendelman, O. V. (2001). Transition of Energy to a Nonlinear Localized Mode in a Highly Asymmetric System of Two Oscillators. Normal Modes and Localization in Nonlinear Systems, 237–253. doi: https://doi.org/10.1007/978-94-017-2452-4_13
  10. Aldoshin, G. T. (2009). Zamechaniya k metodu linearizacii nelineynyh uravneniy s dvumya stepenyami svobody. V sb. «Matematika, informatika, estestvoznanie v ekonomike i obshchestve». Trudy mezhdunarodnoy nauchno-prakticheskoy konferencii. Vol. 1. Moscow: MFYUF.
  11. Bubnovich, E. V., Moldaganapova, A. G. K voprosu ob issledovanii rezonansov pri vynuzhdennyh vzaimosvyazannyh kolebaniyah gibkoy niti. Available at: http://portal.kazntu.kz/files/publicate/%20Молдаганапова%20.pdf
  12. Petrov, A. G. (2015). O vynuzhdennyh kolebaniyah kachayushcheysya pruzhiny pri rezonanse. Doklady Akademii nauk, 464 (5), 553–557. doi: https://doi.org/10.7868/s0869565215290113
  13. Petrov, A. G., Shunderyuk, M. M. (2010). O nelineynyh kolebaniyah tyazheloy material'noy tochki na pruzhine. Izv. RAN. MTT, 2, 27–40.
  14. Bayly, P. V., Virgin, L. N. (1993). An Empirical Study of the Stability of Periodic Motion in the Forced Spring-Pendulum. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 443 (1918), 391–408. doi: https://doi.org/10.1098/rspa.1993.0152
  15. Duka, B., Duka, R. (2018). On the elastic pendulum, parametric resonance and “pumping” swings. European Journal of Physics. 2018. doi: https://doi.org/10.1088/1361-6404/aaf146
  16. Breitenberger, E., Mueller, R. D. (1981). The elastic pendulum: A nonlinear paradigm. Journal of Mathematical Physics, 22 (6), 1196–1210. doi: https://doi.org/10.1063/1.525030
  17. Dullin, H., Giacobbe, A., Cushman, R. (2004). Monodromy in the resonant swing spring. Physica D: Nonlinear Phenomena, 190 (1-2), 15–37. doi: https://doi.org/10.1016/j.physd.2003.10.004
  18. Ryland, G., Meirovitch, L. (1977). Stability boundaries of a swinging spring with oscillating support. Journal of Sound and Vibration, 51 (4), 547–560. doi: https://doi.org/10.1016/s0022-460x(77)80051-5
  19. Holm, D. D., Lynch, P. (2002). Stepwise Precession of the Resonant Swinging Spring. SIAM Journal on Applied Dynamical Systems, 1 (1), 44–64. doi: https://doi.org/10.1137/s1111111101388571
  20. Lynch, P., Houghton, C. (2004). Pulsation and precession of the resonant swinging spring. Physica D: Nonlinear Phenomena, 190 (1-2), 38–62. doi: https://doi.org/10.1016/j.physd.2003.09.043
  21. Klimenko, A. A., Mihlin, Yu. V. (2009). Nelineynaya dinamika pruzhinnogo mayatnika. Dinamicheskie sistemy, 27, 51–65.
  22. Broucke, R., Baxa, P. A. (1973). Periodic solutions of a spring-pendulum system. Celestial Mechanics, 8 (2), 261–267. doi: https://doi.org/10.1007/bf01231426
  23. Hitzl, D. L. (1975). The swinging spring invariant curves formed by quasi-periodic solution. III. Astron and Astrophys, 41 (2), 187–198.
  24. Modelirovanie dvizheniya dvoynogo mayatnika v Dekartovoy sisteme koordinat. Available at: https://www.wolfram.com/mathematica/new-in-9/advanced-hybrid-and-differential-algebraic-equations/double-pendulum.html
  25. The Spring Pendulum (Optional). Available at: http://homepage.math.uiowa.edu/~stroyan/CTLC3rdEd/ProjectsOldCD/estroyan/cd/46/index.htm
  26. Gavin, H. P. (2014). Generalized Coordinates, Lagrange’s Equations, and Constraints. CEE 541. Structural Dynamics. Department of Civil and Environmental Engineering Duke University, 23.
  27. Van der Weele, J. P., de Kleine, E. (1996). The order-chaos-order sequence in the spring pendulum. Physica A: Statistical Mechanics and Its Applications, 228 (1-4), 245–272. doi: https://doi.org/10.1016/0378-4371(95)00426-2
  28. File:Spring pendulum.gif. Available at: https://en.wikipedia.org/wiki/File:Spring_pendulum.gif
  29. Aldoshin, G. T., Yakovlev, S. P. (2012). Dynamics of a swinging spring with moving support. Vestnik Sankt-Peterburgskogo universiteta. Seriya 1. Matematika. Mekhanika. Astronomiya, 4, 45–52.
  30. Semkiv, O., Shoman, O., Sukharkova, E., Zhurilo, A., Fedchenko, H. (2017). Development of projection technique for determining the non-chaotic oscillation trajectories in the conservative pendulum systems. Eastern-European Journal of Enterprise Technologies, 2 (4 (86)), 48–57. doi: https://doi.org/10.15587/1729-4061.2017.95764
  31. Kutsenko, L., Semkiv, O., Asotskyi, V., Zapolskiy, L., Shoman, O., Ismailova, N. et. al. (2018). Geometric modeling of the unfolding of a rod structure in the form of a double spherical pendulum in weightlessness. Eastern-European Journal of Enterprise Technologies, 4 (7 (94)), 13–24. doi: https://doi.org/10.15587/1729-4061.2018.139595
  32. Kutsenko, L. M. Piksasov, M. M., Zapolskyi, L. L. (2018). Iliustratsiyi do statti "Heometrychne modeliuvannia periodychnoi traiektoriyi vantazhu khytnoi pruzhyny". Available at: http://repositsc.nuczu.edu.ua/handle/123456789/7637

##submission.downloads##

Опубліковано

2019-01-14

Як цитувати

Kutsenko, L., Semkiv, O., Kalynovskyi, A., Zapolskiy, L., Shoman, O., Virchenko, G., Martynov, V., Zhuravskij, M., Danylenko, V., & Ismailova, N. (2019). Розробка способу комп’ютерного моделювання періодичної траєкторії переміщення вантажу хитної пружини. Eastern-European Journal of Enterprise Technologies, 1(7 (97), 60–73. https://doi.org/10.15587/1729-4061.2019.154191

Номер

Розділ

Прикладна механіка