Development of procedures for determining the parameters of an aircraft servo actuator

Authors

DOI:

https://doi.org/10.15587/1729-4061.2019.154837

Keywords:

electro-hydraulic actuator, speed characteristic, dead space, amplitude-frequency characteristic, phase-frequency characteristic

Abstract

Main trends in the use of electro-hydraulic actuators and requirements to parameters were discussed. Necessity of using automatic methods for testing an electro-hydraulic actuator together with the standard hardware of the electronic control unit was substantiated. The procedures for testing the control loop of an electro-hydraulic actuator set forth in this study make it possible to eliminate effects of mutual influence of dynamic and static characteristics of the actuator and hardware of the electronic control unit. Procedures for automatic identification of the actuator model and procedures for automatic determination of main parameters and characteristics of the actuator such as zero shift, dead space, amplitude-frequency, phase-frequency and speed characteristics have been proposed. When introducing the proposed procedures, the problem of processing high-speed characteristics of the actuator having high noisiness associated with the pulse nature of the derivative of the discrete signal of the actuator position (12 bits) was solved. In order to avoid introduction of errors in the waveform, in addition to standard digital filtering methods, it was proposed to approximate the noisy actuator characteristic by means of the Bezier curve. A procedure was proposed to record hysteresis of the speed characteristic by means of a cycle of continuous change of speed of movement of the output link of the actuator during the working stroke. The method for automatic identification of a simplified actuator model can significantly reduce labor costs in processing of experimental data. The parameters of the actuator model obtained for various deviations in parameters and various actuator operating conditions (external factors) can improve quality of synthesis of control algorithms

Author Biography

Eugene Kononykhin, PrJSC FED Symska str., 132, Kharkiv, Ukraine, 61000

Head of Research Department

PrJSC FED

References

  1. Erofeev, E. V. (2016). Sistema rulevyh privodov i energeticheskiy kompleks perspektivnyh samoletov transportnoy kategorii. Elektrifikaciya letatel'nyh apparatov. Tr. nauch.-tekhn. konf. Moskva: ID Akad. Zhukovskogo, 178–187.
  2. Ogoltsov, I., Samsonovich, S., Selivanov, A., Alekseenkov, A. (2014). New developments of electrically powered electrohydraulic and electromechanical actuators for the more electric aircraft. 29th Congress of the International Council of the Aeronautical Sciences. Saint Petersburg.
  3. Barnett, S. A., Lammers, Z., Razidlo, B., Leland, Q., DelMar, J. (2012). Test Set-up for Electromechanical Actuation Systems for Aircraft Flight Control. SAE Technical Paper Series. doi: https://doi.org/10.4271/2012-01-2203
  4. R50-109-89. Rekomendacii. Nadezhnost' v tekhnike. Obespechenie nadezhnosti izdeliy. Obshchie trebovaniya (1989). Moscow.
  5. Actuators: Aircraft Flight Controls, Power Operated, Hydraulic, General Specification For. ARP 1281. SAE. doi: https://doi.org/10.4271/arp1281
  6. Cantero, E. D., Andreazza, W., Bravin, E., Sosa, A. (2014). Acceptance test for the linear motion actuator for the scanning slit of the hie-isolde short diagnostic boxes. European organization for nuclear research. CERN-ACC-NOTE-2014-0099. HIE-ISOLDE-PROJECT-Note-0036. Geneva.
  7. Gilson, E., Kopp, J. D., Manzanares D. (2014). Moog next generation control and actuation. R3ASC. Toulouse, 43–54.
  8. Chan, C.-H., Liu, G. (2004). Actuator hysteresis identification and compensation using an adaptive search space based genetic algorithm. Proceedings of the 2004 American Control Conference. doi: https://doi.org/10.23919/acc.2004.1384775
  9. Balaban, E., Bansal, P., Stoelting, P., Saxena, A., Goebel, K. F., Curran, S. (2009). A diagnostic approach for electro-mechanical actuators in aerospace systems. 2009 IEEE Aerospace Conference. doi: https://doi.org/10.1109/aero.2009.4839661
  10. Narasiman, S., Roychoudhury, I., Balaban, E., Saxena, A. (2010). Combining model-based and feature-driven diagnosis approaches – a case study on electromechanical actuators. 21st International workshop on principles of diagnosis.
  11. Langjord, H., Kaasa, G.-O., Johansen, T. A. Nonlinear observer and parameter estimation for electropneumatic clutch actuator. Available at: http://folk.ntnu.no/torarnj/Nolcosver2.pdf
  12. Desborough, L., Miller, R. (2001). Increasing customer value of industrial control performance monitoring -honeywell’s experience. Chemical Process Control, 172–192.
  13. Choudhury, A. S., Shah, S. L., Thornhill, N. F. (2008). Diagnosis of Process Nonlinearities and Valve Stiction. Data Driven Approaches. Springer, 286. doi: https://doi.org/10.1007/978-3-540-79224-6
  14. Liang, L., Jiannan, L., Wan, H. (2014). Parameter estimation for linear control valve with hysteresis. Submitted to IEEE transactions on automation science and engineering. Available at: https://arxiv.org/pdf/1605.00347.pdf
  15. Shi, W. Electro-Hydraulic Servo-Valve and Motion and Control Loading of Full Flight Simulator. Available at: https://digital.library.ryerson.ca/islandora/object/RULA%3A2203/datastream/OBJ/download/Electro-Hydraulic_Servo-Valve_and_Motion_and_Control_Loading_of__Full_Flight_Simulator.pdf
  16. Xu, Y. (2013). Modelling and control of a high performance electro-hydraulic test bench. INSA de Lyon.
  17. Michel, R. A simple method to determine control valve performance and its impacts on control loop performance. Available at: http://www.topcontrol.com/fichiers/en/controlvalveperformance.pdf
  18. Galinaitis, W. S., Joseph, D. S., Rogers, R. C. (2001). Parameter Identification for Preisach Models of Hysteresis. ASME Design Engineering Technical Conferences. Pittsburgh.
  19. Abbasov, M. E. (2014). Metody optimizacii. Sankt-Peterburg.
  20. Grigor'eva, K. V. (2007). Metody resheniya zadachi minimizacii kvadratichnoy funkcii. Sankt-Peterburg.
  21. Armstrong, B., Wit, C. C. (1995). Friction Modeling and Compensation. The Control Handbook. CRC Press.
  22. Kononykhin, E. A., Yepifanov, S. V. (2016). Backfitting of servovalve characteristics using unit level dynamic models. Aviacionno-kosmicheskaya tekhnika i tekhnologiya, 6, 48–54.

Downloads

Published

2019-01-22

How to Cite

Kononykhin, E. (2019). Development of procedures for determining the parameters of an aircraft servo actuator. Eastern-European Journal of Enterprise Technologies, 1(9 (97), 11–18. https://doi.org/10.15587/1729-4061.2019.154837

Issue

Section

Information and controlling system