Determination of parameters of the stochastic inventory management system in the conditions of economically-based shortage




safety stock, stochastic models of inventory management, shortage level, customer service level


A methodical approach to determining the optimal parameters of a stochastic inventory management system in the context of an economically justified deficit that allows responding quickly to fluctuations in demand and the dynamics of changes in inventory status is proposed and tested on real data. This approach relates, in particular, the shortage costs and the corresponding service level with the values of safety stock, order quantity and the threshold stock level. The technique is applicable to the normal distribution of inventory consumption and delivery time.

Determining the optimal parameters of the inventory management system in the conditions of unstable consumption and replenishment allows you to prevent an overestimation of the volume of inventories in the warehouses of industrial and commercial enterprises. At the same time, the need for working capital (the value of investments in stocks) and the total value added in the supply chains of goods decline, the risks of illiquid stocks decrease.

As a result of the study, a causal relationship was established between the level of customer service, the shortage level, order quantity and safety stock volume. It is proved that the procedure for determining the parameters of the stochastic inventory management system should be preceded by determining the economically feasible shortage level, which will determine the optimal level of customer service and the optimal size of safety stock by the criterion of total costs.

The proposed approach allows processing the accumulated statistical data on the dynamics of changes in stock status in real time using statistical methods and finding a compromise between the size of safety stock, the shortage level and the level of customer service by the criterion of minimum total costs

Author Biographies

Lidiia Savchenko, National Aviation University Kosmonavta Komarova ave., 1, Kyiv, Ukraine, 03058

PhD, Associate Professor

Department of Logistics

Mariya Grygorak, National Aviation University Kosmonavta Komarova ave., 1, Kyiv, Ukraine, 03058

PhD, Associate Professor, Head of Department

Department of Logistics


  1. Shraybfeder, Dzh. (2008). Effektivnoe upravlenie zapasami. Moscow: Al'pina Biznes Buks, 304.
  2. Franco, C. E., Rubha, S. (2017). An overview about JIT (just-in-time) – inventory management system. International Journal of Research – Granthaalayah, 5 (4), 14–18. Available at:
  3. Jiang, Q., Xing, W., Hou, R., Zhou, B. (2015). An Optimization Model for Inventory System and the Algorithm for the Optimal Inventory Costs Based on Supply-Demand Balance. Mathematical Problems in Engineering, 2015, 1–11. doi:
  4. Harris, F. W. (1990). How Many Parts to Make at Once. Operations Research, 38 (6), 947–950. doi:
  5. Wilson, R. H. (1934). A Scientific Routine for Stock Control. Harvard Business Review, 13 (1), 116–128.
  6. Bauersoks Donald, Dzh. (2008). Logistika: integrirovannaya cep' postavok. Moscow: ZAO «Olimp-Biznes», 640.
  7. Sergeev, V. I. (2010). Upravlenie kachestvom logisticheskogo servisa. Logistika segodnya, 1, 10–16.
  8. Vozhzhov, A. P., Lunyakov, O. V., Vozhzhov, S. P. (2015). Safety stock determination with application of the Poisson processes to incoming and outgoing flows. Ekonomika i upravlenie: teoriya i praktika, 1, 30–35. Available at:
  9. Atamanchuk, Yu. S., Pasenchenko, Yu. A. (2016). Modeling of enterprise's inventory management with allowance for uncertain demand. Aktualni problemy ekonomiky ta upravlinnia: zbirnyk naukovykh prats molodykh vchenykh, 10. Available at:
  10. Ermol'ev, Yu. M. (1966). O nekotoryh metodah stohasticheskoy optimizacii. Kibernetika, 6, 96–98.
  11. Ermoliev, Y. M., Norkin, V. I. (1997). On nonsmooth and discontinuous problems of stochastic systems optimization. European Journal of Operational Research, 101 (2), 230–244. doi:
  12. Ermol'ev, Yu. M. (Ed.) (1990). Adaptivnye algoritmy stohasticheskoy optimizacii i teorii igr. Moscow: Nauka, 184.
  13. Sterligova, A. N. (2008). Upravlenie zapasami v cepyah postavok. Moscow: Infra-M, 430.
  14. Savchenko, L. V. (2012). Vytraty vid defitsytu v systemakh upravlinnia zapasamy. Rynok posluh kompleksnykh transportnykh system ta prykladni problemy lohistyky: 14 mizhnarodna naukovo-praktychna konferentsiya. Kyiv, 107–109.
  15. Dai, J., Li, S., Peng, S. (2017). Analysis on Causes and Countermeasures of Bullwhip Effect. MATEC Web of Conferences, 100, 05018. doi:
  16. Dooley, K. J., Yan, T., Mohan, S., Gopalakrishnan, M. (2010). Inventory management and the bullwhip effect during the 2007–2009 recession: evidence from the manufacturing sector. Journal of Supply Chain Management, 46 (1), 12–18. doi:
  17. Abbou, R., Moussaoui, C., Loiseau, J. J. (2015). Effects of inventory control on bullwhip in logistic systems under demand and lead time uncertainties. IFAC-PapersOnLine, 48 (3), 266–271. doi:
  18. Cárdenas-Barrón, L. E. (2009). Economic production quantity with rework process at a single-stage manufacturing system with planned backorders. Computers & Industrial Engineering, 57 (3), 1105–1113. doi:
  19. Cárdenas-Barrón, L. E. (2011). The derivation of EOQ/EPQ inventory models with two backorders costs using analytic geometry and algebra. Applied Mathematical Modelling, 35 (5), 2394–2407. doi:
  20. Sarkar, S., Mandal, B., Sarkar, B. (2016). Preservation of deteriorating seasonal products with stock-dependent consumption rate and shortages. Journal of Industrial and Management Optimization, 12 (4), 11–11. doi:
  21. San-José, L. A., Sicilia, J., García-Laguna, J. (2015). Analysis of an EOQ inventory model with partial backordering and non-linear unit holding cost. Omega, 54, 147–157. doi:
  22. Pervin, M., Roy, S. K., Weber, G.-W. (2016). Analysis of inventory control model with shortage under time-dependent demand and time-varying holding cost including stochastic deterioration. Annals of Operations Research, 260 (1-2), 437–460. doi:
  23. Nobil, A. H., Sedigh, A. H. A., Cárdenas-Barrón, L. E. (2018). A Generalized Economic Order Quantity Inventory Model with Shortage: Case Study of a Poultry Farmer. Arabian Journal for Science and Engineering, 44 (3), 2653–2663. doi:
  24. Zhang, X., Huang, S., Wan, Z. (2016). Optimal pricing and ordering in global supply chain management with constraints under random demand. Applied Mathematical Modelling, 40 (23-24), 10105–10130. doi:
  25. Momeni, Z., Azizi, A. (2018). Current Order and Inventory Models in Manufacturing Environments: A Review from 2008 to 2018. International Journal of Online Engineering (iJOE), 14 (06), 223. doi:
  26. Grigor'ev, M. N., Dolgov, A. P., Uvarov, S. A. (2016). Logistika. Prodvinutiy kurs. Moscow: Iz-vo Yurayt, 472.
  27. Ancyferov, S. S. Rusanov, K. E., Afanas'ev, M. S. (2014). Obrabotka rezul'tatov izmereniy. Moscow: Ikar, 228.
  28. Allen, W. R. (1961). Testing statistical hypotheses, by E. L. Lehmann. John Wiley and Sons, Inc., New York, 1959. Naval Research Logistics Quarterly, 8 (2), 201–201. doi:
  29. Tablica znacheniy funkcii Laplasa. Available at:
  30. Kriticheskie tochki raspredeleniya Χ2. Available at:
  31. Greenland, S., Senn, S. J., Rothman, K. J., Carlin, J. B., Poole, C., Goodman, S. N., Altman, D. G. (2016). Statistical tests, P values, confidence intervals, and power: a guide to misinterpretations. European Journal of Epidemiology, 31 (4), 337–350. doi:
  32. Bakhrushyn, V. Ye. (2011). Metody analizu danykh. Zaporizhzhia: KPU, 268.
  33. LaLonde, B. J., Cooper, M. C., Noordewier, T. G. (1988). Customer Service: A Management Perspective. Oak Brook, III: The Council of Logistics Management, 640.
  34. Radionov, A. R., Radionov, R. A. (2002). Logistika. Normirovanie sbytovyh zapasov i oborotnyh sredstv predpriyatiya. Moscow: Delo, 16.




How to Cite

Savchenko, L., & Grygorak, M. (2019). Determination of parameters of the stochastic inventory management system in the conditions of economically-based shortage. Eastern-European Journal of Enterprise Technologies, 1(3 (97), 37–46.



Control processes