Development of chemical methods for individual decontamination of organophosphorus compounds

Authors

  • Lubov Vakhitova L. M. Litvinenko Institute of Physical-Organic Chemistry and Coal Chemistry of the National Academy of Sciences of Ukraine Kharkivske shosse str., 50, Kyiv, Ukraine, 02160, Ukraine https://orcid.org/0000-0003-4727-9961
  • Volodymyr Bessarabov Kyiv National University of Technologies and Design Nemyrovycha-Danchenka str., 2, Kyiv, Ukraine, 01011, Ukraine https://orcid.org/0000-0003-0637-1729
  • Nadezhda Taran L. M. Litvinenko Institute of Physical-Organic Chemistry and Coal Chemistry of the National Academy of Sciences of Ukraine Kharkivske shosse str., 50, Kyiv, Ukraine, 02160, Ukraine https://orcid.org/0000-0003-1043-5596
  • Galina Kuzmina Kyiv National University of Technology and Design Nemyrovycha-Danchenka str., 2, Kyiv, Ukraine, 01011, Ukraine https://orcid.org/0000-0002-0691-8563
  • Viacheslav Derypapa Kyiv National University of Technologies and Design Nemyrovycha-Danchenka str., 2, Kyiv, Ukraine, 01011, Ukraine https://orcid.org/0000-0002-3979-2637
  • Glib Zagoriy Kyiv National University of Technologies and Design Nemyrovycha-Danchenka str., 2, Kyiv, Ukraine, 01011, Ukraine https://orcid.org/0000-0002-9362-3121
  • Anatolii Popov L. M. Litvinenko Institute of Physical-Organic Chemistry and Coal Chemistry of the National Academy of Sciences of Ukraine Kharkivske shosse str., 50, Kyiv, Ukraine, 02160, Ukraine https://orcid.org/0000-0002-5867-0598

DOI:

https://doi.org/10.15587/1729-4061.2019.161208

Keywords:

decontamination system, hydrogen peroxide, carbamide peroxysolvate, paraoxon, methyl parathion, peroxoborate, deactivation, organophosphorus compounds

Abstract

The methods of individual decontamination of organophosphorus esters of paralytic action were studied using the decontamination of paraoxon (O, O-diethyl-O-4-nitrophenylphosphate) and methyl parathion (O, O-dimethyl-O-4-nitrophenylthiophosphate) from solid surfaces (metal, fabric, plastic) as an example. The mixtures of urea hydrogen peroxide, boric acid, cetylpyridinium chloride and montmorillonite nanoclay as decontamination systems were studied. The study showed that application of the micellar system together with nanoclays significantly increases a degree of adsorption of substrates from an infected surface. At the same time, the presence of an activator (boric acid) in systems with urea hydrogen peroxide contributes to an increase in the reaction rate in micellar medium by almost 20 times comparing with systems without activation.

It was established that the studied micellar systems preserved the supernucleophilicity of НОО-anion in relation to electrophilic substrates – paraoxon and methyl parathion. It was concluded that the presence of montmorillonite (sodium- and organomodified ones) increased the magnitude of α effect, both in systems with urea hydrogen peroxide only and in systems with boric acid activator.

The effect of the acceleration of decomposition of organophosphorus substrates in micellar medium by montmorillonite derivatives was established. This fact could be used for the design of «green» decontamination systems of fast action.

An analysis of data on the rate of deactivation of paraoxon and methylparathion on solid surfaces in the studied micellar decontamination systems made it possible to choose the system based on urea hydrogen peroxide, boric acid, cetyl pyridinium chloride and organomodified montmorillonite as the optimal system.

A comparison was performed of the periods of half-lives of paraoxon and methylparathion in the studied micellar systems with the known, and applied in NATO subdivisions, decontamination systems. It was concluded that the rates of decontamination in the proposed systems are higher or not less than the rates in the known systems. At the same time, the proposed systems based on solid source of hydrogen peroxide have advantages in terms of environmental safety, manufacturability, and stability.

The parameters of the decontamination rate and the degree of decomposition of paraoxon and methyl parathion gives us possibility to recommend the micellar systems as promising for individual deactivation of organophosphorus compounds.

The development of fast-acting decontamination formulations, which are mild in their effects on a human body and are environmentally friendly, is a necessary and urgent task among a number of technological solutions for neutralization of toxic organophosphorus substrates, such as pesticides, chemical weapons components and active pharmaceutical ingredients

Author Biographies

Lubov Vakhitova, L. M. Litvinenko Institute of Physical-Organic Chemistry and Coal Chemistry of the National Academy of Sciences of Ukraine Kharkivske shosse str., 50, Kyiv, Ukraine, 02160

PhD, Senior Researcher

Volodymyr Bessarabov, Kyiv National University of Technologies and Design Nemyrovycha-Danchenka str., 2, Kyiv, Ukraine, 01011

PhD, Associate Professor

Department of Industrial Pharmacy

Nadezhda Taran, L. M. Litvinenko Institute of Physical-Organic Chemistry and Coal Chemistry of the National Academy of Sciences of Ukraine Kharkivske shosse str., 50, Kyiv, Ukraine, 02160

PhD, Senior Researcher

Galina Kuzmina, Kyiv National University of Technology and Design Nemyrovycha-Danchenka str., 2, Kyiv, Ukraine, 01011

PhD, Associate Professor

Department of Industrial Pharmacy

Viacheslav Derypapa, Kyiv National University of Technologies and Design Nemyrovycha-Danchenka str., 2, Kyiv, Ukraine, 01011

Researcher

Department of Industrial Pharmacy

Glib Zagoriy, Kyiv National University of Technologies and Design Nemyrovycha-Danchenka str., 2, Kyiv, Ukraine, 01011

Doctor of Pharmaceutical Sciences, Professor

Department of Industrial Pharmacy

Anatolii Popov, L. M. Litvinenko Institute of Physical-Organic Chemistry and Coal Chemistry of the National Academy of Sciences of Ukraine Kharkivske shosse str., 50, Kyiv, Ukraine, 02160

Doctor of Chemical Sciences, Professor

References

  1. Jacquet, P., Daudé, D., Bzdrenga, J., Masson, P., Elias, M., Chabrière, E. (2016). Current and emerging strategies for organophosphate decontamination: special focus on hyperstable enzymes. Environmental Science and Pollution Research, 23 (9), 8200–8218. doi: https://doi.org/10.1007/s11356-016-6143-1
  2. Balali-Mood, M., Saber, H. (2012). Recent advances in the treatment of organophosphorous poisonings. Iranian Journal of Medical Sciences, 37 (2), 74–91
  3. Vakhitova, L., Bessarabov, V., Taran, N., Kuzmina, G., Zagoriy, G., Baula, O., Popov, A. (2017). Decontamination of methyl parathion in activated nucleophilic systems based on carbamide peroxisolvate. Eastern-European Journal of Enterprise Technologies, 6 (10 (90)), 31–37. doi: https://doi.org/10.15587/1729-4061.2017.119495
  4. Bessarabov, V., Vakhitova, L., Kuzmina, G., Zagoriy, G., Baula, O. (2017). Development of micellar system for the decontamination of organophosphorus compounds to clean technological equipment. Eastern-European Journal of Enterprise Technologies, 1 (6 (85)), 42–49. doi: https://doi.org/10.15587/1729-4061.2017.92034
  5. Liu, G., Tang, Q., Zhou, Y., Cao, X., Zhao, J., Zhu, D. (2017). Photo-induced phosphate released from organic phosphorus degradation in deionized and natural water. Photochemical & Photobiological Sciences, 16 (4), 467–475. doi: https://doi.org/10.1039/c6pp00313c
  6. Martin-Reina, J., Duarte, J. A., Cerrillos, L., Bautista, J. D., Soliman, M. M. (2017). Insecticide Reproductive Toxicity Profile: Organophosphate, Carbamate and Pyrethroids. Journal of Toxins, 4 (1). doi: https://doi.org/10.13188/2328-1723.1000019
  7. Convention on the prohibition of the development, production, stockpiling and use of chemical weapons and on their destruction (2005). Organisation for the Prohibition of Chemical Weapons, 181.
  8. Hirakawa, T., Mera, N., Sano, T., Negishi, N., Takeuchi, K. (2009). Decontamination of Chemical Warfare Agents by Photocatalysis. YAKUGAKU ZASSHI, 129 (1), 71–92. doi: https://doi.org/10.1248/yakushi.129.71
  9. Carniato, F., Bisio, C., Evangelisti, C., Psaro, R., Dal Santo, V., Costenaro, D. et. al. (2018). Iron-montmorillonite clays as active sorbents for the decontamination of hazardous chemical warfare agents. Dalton Transactions, 47 (9), 2939–2948. doi: https://doi.org/10.1039/c7dt03859c
  10. Capoun, T., Krykorkova, J. (2014). Comparison of Selected Methods for Individual Decontamination of Chemical Warfare Agents. Toxics, 2 (2), 307–326. doi: https://doi.org/10.3390/toxics2020307
  11. Cabal, J. (2011). Primary Decontamination of Persons. Chemical Weapons and Protection Against Them. Manus, 162–170.
  12. Davisson, M. L., Love, A. H., Vance, A., Reynolds, J. G. (2005). Environmental Fate of Organophosphorus Compounds Related to Chemical Weapons. Lawrence Livermore National Laboratory, 23. doi: https://doi.org/10.2172/15015167
  13. Affam, A. C., Chaudhuri, M., M. Kutty, S. R. (2012). Fenton Treatment of Chlorpyrifos, Cypermethrin and Chlorothalonil Pesticides in Aqueous Solution. Journal of Environmental Science and Technology, 5 (6), 407–418. doi: https://doi.org/10.3923/jest.2012.407.418
  14. Sahu, C., Das, A. K. (2017). Solvolysis of organophosphorus pesticide parathion with simple and α nucleophiles: a theoretical study. Journal of Chemical Sciences, 129 (8), 1301–1317. doi: https://doi.org/10.1007/s12039-017-1322-2
  15. Singh, B., Prasad, G., Pandey, K., Danikhel, R., Vijayaraghavan, R. (2010). Decontamination of Chemical Warfare Agents. Defence Science Journal, 60 (4), 428–441. doi: https://doi.org/10.14429/dsj.60.487
  16. Tuorinsky, S. D., Caneva, D. C., Sidell, F. R. (2008). Triage of chemical casualties. Washington DC, 511–526.
  17. Poirier, L., Jacquet, P., Elias, M., Daudé, D., Chabrière, E. (2017). La décontamination des organophosphorés: vers de nouvelles alternatives. Annales Pharmaceutiques Françaises, 75 (3), 209–226. doi: https://doi.org/10.1016/j.pharma.2017.01.004
  18. Tucker, M. D., Corporation, S. (2008). Pat. No. 8741174 B1 US. Reduced weight decontamination formulation for neutralization of chemical and biological warfare agents. No. 10251569; declareted: 21.05.2008; published: 03.06.2014. Available at: https://patentimages.storage.googleapis.com/5a/a4/ac/ab79110865bcb2/US8741174.pdf
  19. Spiandore, M., Piram, A., Lacoste, A., Prevost, P., Maloni, P., Torre, F. et. al. (2017). Efficacy of scalp hair decontamination following exposure to vapours of sulphur mustard simulants 2-chloroethyl ethyl sulphide and methyl salicylate. Chemico-Biological Interactions, 267, 74–79. doi: https://doi.org/10.1016/j.cbi.2016.07.018
  20. Han, X., Balakrishnan, V. K., vanLoon, G. W., Buncel, E. (2006). Degradation of the Pesticide Fenitrothion as Mediated by Cationic Surfactants and α-Nucleophilic Reagents. Langmuir, 22 (21), 9009–9017. doi: https://doi.org/10.1021/la060641t
  21. Tazrart, A., Bolzinger, M. A., Moureau, A., Molina, T., Coudert, S., Angulo, J. F. et. al. (2017). Penetration and decontamination of americium-241 ex vivo using fresh and frozen pig skin. Chemico-Biological Interactions, 267, 40–47. doi: https://doi.org/10.1016/j.cbi.2016.05.027
  22. Thors, L., Koch, M., Wigenstam, E., Koch, B., Hägglund, L., Bucht, A. (2017). Comparison of skin decontamination efficacy of commercial decontamination products following exposure to VX on human skin. Chemico-Biological Interactions, 273, 82–89. doi: https://doi.org/10.1016/j.cbi.2017.06.002
  23. Vakhitova, L. M., Bessarabov, V. I. (2016). Pat. No. 115165 UA. Dekontaminatsiyna kompozytsiya dlia utylizatsiyi fosfor- ta sirkoorhanichnykh toksychnykh rechovyn. No. u201609131; declareted: 31.08.2016; published: 10.04.2017, Bul. No. 7. Available at: http://uapatents.com/12-115165-dekontaminacijjna-kompoziciya-dlya-utilizaci-fosfor-ta-sirkoorganichnikh-toksichnikh-rechovin.html
  24. Vol'nov, I. I., Antonovskiy, V. L. (1985). Peroksidnye proizvodnye i addukty karbonatov. Moscow: Nauka, 180.
  25. Vahitova, L. N. et. al. (2011). Nukleofil'no-okislitel'nye sistemy na osnove peroksida vodoroda dlya razlozheniya substratov-ekotoksikantov. Zhurnal organicheskoy himii, 47 (7), 951–960.
  26. Popov, A. F. (2008). Design of green microorganized systems for decontamination of ecotoxicants. Pure and Applied Chemistry, 80 (7), 1381–1397. doi: https://doi.org/10.1351/pac200880071381
  27. Vakhitova, L. N., Lakhtarenko, N. V., Popov, A. F. (2015). Kinetics of the Oxidation of Methyl Phenyl Sulfide by Peroxoborate Anions. Theoretical and Experimental Chemistry, 51 (5), 297–302. doi: https://doi.org/10.1007/s11237-015-9430-x
  28. Martinek, K. et. al.; Mitell, K. L. (Ed.) (1980). Micelloobrazovanie, solyubilizaciya i mikroemul'sii. Moscow: Mir, 224.
  29. Wagner, G. W., Bartram, P. W., Procell, L. R., Henderson, V. D., Yang, Y.-C. (2002). Decon green. Report U.S. Army ECBC, ATTN: AMSSB-RRT-CA, 5183 Blackhawk Rd., APG, MD 21010-5424, 6. Available at: http://www.dtic.mil/dtic/tr/fulltext/u2/a436061.pdf
  30. Sadovskiy, Yu. S., Solomoychenko, T. N., Prokop'eva, T. M., Piskunova, Zh. P., Razumova, N. G., Panchenko, B. V., Popov, A. F. (2012). Reakcionnaya sposobnost' sistemy H2O2/B(OH)3/HO- v processah razlozheniya 4-nitrofenilovyh efirov dietilfosfonovoy i dietilfosfornoy kislot. Teoreticheskaya i eksperimental'naya himiya, 48 (3), 152–158.
  31. Vahitova, L. N. et. al. (2011). Peroksisol'vaty karbamida i karbonata natriya v reakciyah nukleofil'nogo rasshchepleniya paraoksona. Teoreticheskaya i eksperimental'naya himiya, 47 (1), 217–223.
  32. Bessarabov, V. I., Vakhitova, L. M., Kuzmina, H. I., Baula, O. P., Lisovyi, V. M., Zderko, N. P. (2018). Development of method of estimation efficiency of decontamination of phosphororganic compounds. Bulletin of the Kyiv National University of Technologies and Design. Technical Science Series, 5, 114–122. doi: https://doi.org/10.30857/1813-6796.2018.5.13

Downloads

Published

2019-03-27

How to Cite

Vakhitova, L., Bessarabov, V., Taran, N., Kuzmina, G., Derypapa, V., Zagoriy, G., & Popov, A. (2019). Development of chemical methods for individual decontamination of organophosphorus compounds. Eastern-European Journal of Enterprise Technologies, 2(6 (98), 6–14. https://doi.org/10.15587/1729-4061.2019.161208

Issue

Section

Technology organic and inorganic substances