Evaluation of dynamic properties of gas pumping units according to the results of experimental researches

Authors

DOI:

https://doi.org/10.15587/1729-4061.2019.163113

Keywords:

gas pumping units, experimental studies, acceleration characteristic, area method, technical condition, software product, transfer functions

Abstract

Experimental studies of the dynamic properties of gas pumping units (GPU) of various types, which allowed us to obtain GPU acceleration curves and determine the parameters of the transfer function through various transmission channels of input effects, are conducted. For this, a method and a software product were developed for implementing the procedure for determining the areas of the k orders through the moments of the auxiliary function. As a result of the experiments performed on operating GPU, the acceleration characteristics of the selected signal transmission channels were obtained. To identify the dynamic properties of the GPU, a software product was developed in the MatLab environment, which in iterative mode allows each acceleration curve to be approximated by the transfer function, the order of which is selected by the user. The iterative mode allows the user to select the order of the polynomials of the numerator and denominator of the transfer function, and also to calculate the numerical values of the parameters of the selected transfer function. The software product was tested on industrial data obtained during normal start-up of theGPU. The obtained results can be used in the development of a new method for monitoringthe reliability and diagnosing the technical state of automatic control systems (ACS) of the gas pumping units and its components. The essence of the method is that a change in the technical state of the ACS or GPU affects their dynamic properties, and this, in turn, causes a change in the parameters of the transfer functions, which can be recorded after a certain period of time. Determining the ranges of values of the transfer function coefficients for various technical states of different types of ACS and GPU, it will be possible to predict the period of their operation in the future

Author Biographies

Mykhailo Gorbiychuk, Ivano-Frankivsk National Technical University of Oil and Gas Karpatska str., 15, Ivano-Frankivsk, Ukraine, 76019

Doctor of Technical Sciences, Professor

Department of Computer Systems and Networks

Olena Zamikhovska, Ivano-Frankivsk National Technical University of Oil and Gas Karpatska str., 15, Ivano-Frankivsk, Ukraine, 76019

PhD, Associate Professor

Department of Information and Telecommunication Technologies and Systems

Leonid Zamikhovskyi, Ivano-Frankivsk National Technical University of Oil and Gas Karpatska str., 15, Ivano-Frankivsk, Ukraine, 76019

Doctor of Technical Sciences, Professor

Department of Information and Telecommunication Technologies and Systems

Serhii Zikratyi, Ivano-Frankivsk National Technical University of Oil and Gas Karpatska str., 15, Ivano-Frankivsk, Ukraine, 76019

PhD, Associate Professor

Department of Information and Telecommunication Technologies and Systems

Lidiia Shtaier, Ivano-Frankivsk National Technical University of Oil and Gas Karpatska str., 15, Ivano-Frankivsk, Ukraine, 76019

PhD, Associate Professor

Department of Information and Telecommunication Technologies and Systems

References

  1. Zamihovskiy, L., Slobodchikov, K. (2014). The regulation of automatic control systems at the level of gas «compressor plant – compressor station»: problems and solutions. Transport i hranenie nefteproduktov i uglevodorodnogo syr'ya, 1, 23–29.
  2. Zamikhovskyi, L. M., Zikratyi, S. V., Shtaier, L. O. (2017). Suchasnyi stan otsinky nadiynosti system avtomatyky hazoperekachuvalnykh ahrehativ. Naukovyi visnyk IFNTUNH, 2 (43), 79–88.
  3. Kuzo, I. V., Sholoviy, Yu. P., Fliunt, O. R. (2013). Rozvytok metodiv diahnostyky osnovnoho obladnannia kompresornykh stantsiy. Truboprovidnyi transport, 6 (84), 18–20.
  4. Nishcheta, V. V. (2010). Shchodo klasyfikatsiyi system tekhnichnoi diahnostyky. Naftova i hazova promyslovist, 2, 47–52.
  5. Harihara, P. P., Parlos, A. G. (2012). Fault diagnosis of centrifugal pumps using motor electrical signals. Centrifugal Pumps, 15–32. doi: https://doi.org/10.5772/26439
  6. Zanoli, S. M., Astolfi, G., Marczyk, J. (2012). Complexity-based methodology for Fault Diagnosis: application on a centrifugal machine. IFAC Proceedings Volumes, 45 (12), 51–56. doi: https://doi.org/10.3182/20120620-3-mx-3012.00060
  7. Parthasarathy, G., Mylaraswany, D., Uluyol, O. et. al. (2011). Readiness Approach for Propulsion Engine LRUs. MFPT Applied Systems Health Management Conference. Virginia Beach, VA.
  8. Halimi, D., Hafaifa, A., Boualie, E. (2014). Maintenance actions planning in industrial centrifugal compressor based on failure analysis. Eksplotacja i Niezawodnosc – Maintenance and Reliability, 16 (1), 17–21.
  9. Marczyk, J. (2011). A New Theory of Risk and Rating. New tools for surviving in a complex and turbulent economy. Trento: Editrice, Uni service, 234.
  10. Albraik, A., Althobiani, F., Gu, F., Ball, A. (2012). Diagnosis of Centrifugal Pump Faults Using Vibration Methods. Journal of Physics: Conference Series, 364, 012139. doi: https://doi.org/10.1088/1742-6596/364/1/012139
  11. Huang, S. (2011). Immune Genetic Evolutionary Algorithm of Wavelet Neural Network to Predict the Performance in the Centrifugal Compressor and Research. Journal of Software, 6 (5), 908–914. doi: https://doi.org/10.4304/jsw.6.5.908-914
  12. Mishchenko, T. N. (2014). Theoretical aspects and methods of parameters identification of electric traction system devices. Method of weight function. Science and Transport Progress. Bulletin of Dnipropetrovsk National University of Railway Transpor, 5, 74–82. doi: https://doi.org/10.15802/stp2014/30763
  13. Kuzyk, A. (2016). Spectral and correlation analysis of signals with continuous and discrete frequency modulation. Visnyk Natsionalnoho universytetu "Lvivska politekhnika". Radioelektronika ta telekomunikatsiyi, 849, 31–44.
  14. Strizhnev, A. G. Markov, A. V., Rusakovich, A. N. (2012). Control object identification using closed-loop system transient response. Doklady Belorusskogo gosudarstvennogo universiteta informatiki i radioelektroniki, 5 (67), 65–72.
  15. Karikov, E. B., Mishunin, V. V., Rubanov, V. G., Gol'cov, Yu. A. (2012). Modelirovanie teplotekhnologicheskih ob'ektov v klasse drobno-irracional'nyh peredatochnyh funkciy. Nauchnye vedomosti BelGU. Ser.: Istoriya. Politologiya. Ekonomika. Informatika, 13 (132), 173–179.
  16. Babenko, Yu. I. (2009). Metod drobnogo differencirovaniya v prikladnyh zadachah teorii teplomassoobmena. Sankt-Peterburg: NPO «Professional», 584.
  17. Volgin, V. V. (1972). Metody rascheta sistem avtomaticheskogo regulirovaniya. Moscow: Izd-vo MEI, 192.
  18. Simoyu, M. P. (1957). Opredelenie koefficientov peredatochnyh funkciy linearizovannyh zven'ev i sistem avtoregulirovaniya. Avtomatika i telemekhanika, 18 (6), 514–528.
  19. Verzhbickiy, V. M. (2002). Osnovy chislennyh metodov. Moscow: Vysshaya shkola, 840.
  20. Gorbiychuk, M. I., Pistun, Ye. P. (2010). Chyslovi metody i modeliuvannia na EOM. Ivano-Frankivsk: Fakel, 402.

Downloads

Published

2019-04-08

How to Cite

Gorbiychuk, M., Zamikhovska, O., Zamikhovskyi, L., Zikratyi, S., & Shtaier, L. (2019). Evaluation of dynamic properties of gas pumping units according to the results of experimental researches. Eastern-European Journal of Enterprise Technologies, 2(2 (98), 73–81. https://doi.org/10.15587/1729-4061.2019.163113