Interlaboratory comparisons of the calibration results of signal generator

Authors

  • Oleh Velychko State Enterprise “All-Ukrainian State Scientific and Production Centre for Standardization, Metrology, Certification and Protection of Consumer”, (SE “Ukrmetrteststandard”) Metrolohichna str., 4, Kyiv, Ukraine, 03143, Ukraine https://orcid.org/0000-0002-6564-4144
  • Sergii Shevkun State Enterprise “All-Ukrainian State Scientific and Production Centre for Standardization, Metrology, Certification and Protection of Consumer”, (SE “Ukrmetrteststandard”) Metrolohichna str., 4, Kyiv, Ukraine, 03143, Ukraine https://orcid.org/0000-0003-1923-6227
  • Oleh Mescheriak State Enterprise “All-Ukrainian State Scientific and Production Centre for Standardization, Metrology, Certification and Protection of Consumer”, (SE “Ukrmetrteststandard”) Metrolohichna str., 4, Kyiv, Ukraine, 03143, Ukraine https://orcid.org/0000-0003-2844-7018
  • Tetyana Gordiyenko Odessa State Academy of Technical Regulation and Quality Kovalska str., 15, Odessa, Ukraine, 65020, Ukraine https://orcid.org/0000-0003-0324-9672
  • Sergii Kursin State Enterprise “All-Ukrainian State Scientific and Production Centre for Standardization, Metrology, Certification and Protection of Consumer”, (SE “Ukrmetrteststandard”) Metrolohichna str., 4, Kyiv, Ukraine, 03143, Ukraine https://orcid.org/0000-0003-2147-6211

DOI:

https://doi.org/10.15587/1729-4061.2019.166504

Keywords:

interlaboratory comparison, calibration laboratory, measurement uncertainty, signal generator, comparison sample.

Abstract

The data of interlaboratory comparisons of calibration results of signal generators at three calibration points are presented. The choice of methodology for processing the results of interlaboratory comparisons is made taking into account the long-term drift of the comparison sample. The modernization and research of the comparison sample for interlaboratory comparisons of calibration results of signal generators are carried out. The assigned values for the three calibration points and their extended uncertainties are determined. Expressions are obtained for the approximation of the long-term drift of the comparison sample and uncertainty budgets for all assigned values of the comparison sample at the frequencies of 130 MHz, 168 MHz and 223 MHz are compiled.

The interlaboratory deviations of the results obtained by laboratories are determined and the consistency of the data obtained using the En and z indicators is estimated. This characterizes the reliability and accuracy of laboratory measurement results, and is also important for confirming technical competence. The presented results of interlaboratory comparisons of the signal generator calibration results show that all participating laboratories meet the requirements by the En indicator. At the same time, two out of ten laboratories require certain substantial corrective measures, as they do not meet the requirements by the z indicator.

It is established that the En indicator is not always self-sufficient. It largely characterizes only the reliability of laboratory measurement results. For this purpose, the z indicator is more informative, which provides more information on the accuracy of laboratory measurement, that is, the proximity of measurement results to the true value.

Author Biographies

Oleh Velychko, State Enterprise “All-Ukrainian State Scientific and Production Centre for Standardization, Metrology, Certification and Protection of Consumer”, (SE “Ukrmetrteststandard”) Metrolohichna str., 4, Kyiv, Ukraine, 03143

Doctor of Technical Sciences, Professor, Director

Scientific and Production Institute of Electromagnetic Measurements

Sergii Shevkun, State Enterprise “All-Ukrainian State Scientific and Production Centre for Standardization, Metrology, Certification and Protection of Consumer”, (SE “Ukrmetrteststandard”) Metrolohichna str., 4, Kyiv, Ukraine, 03143

PhD, Head of Department

Department of State Standards of Electromagnetic Quantity, Time and Frequency

Oleh Mescheriak, State Enterprise “All-Ukrainian State Scientific and Production Centre for Standardization, Metrology, Certification and Protection of Consumer”, (SE “Ukrmetrteststandard”) Metrolohichna str., 4, Kyiv, Ukraine, 03143

Head of Research Laboratory Measurements of Time and Frequency

Department of State Standards of Electromagnetic Quantity, Time and Frequency

Tetyana Gordiyenko, Odessa State Academy of Technical Regulation and Quality Kovalska str., 15, Odessa, Ukraine, 65020

Doctor of Technical Sciences, Professor, Head of Department

Department of Standardization, Conformity Assessment and Educational Measurements

Sergii Kursin, State Enterprise “All-Ukrainian State Scientific and Production Centre for Standardization, Metrology, Certification and Protection of Consumer”, (SE “Ukrmetrteststandard”) Metrolohichna str., 4, Kyiv, Ukraine, 03143

PhD, Head of Laboratory

Scientific and Production Institute of Electromagnetic Measurements

References

  1. International vocabulary of metrology. Basic and general concepts and associated terms (VIM) (2012). JCGM. Available at: https://www.bipm.org/utils/common/documents/jcgm/JCGM_200_2012.pdf
  2. ISO/IEC Guide 98-3:2008. Uncertainty of measurement. Part 3. Guide to the expression of uncertainty in measurement (GUM:1995) (2008). ISO/IEC, 130.
  3. ILAC Policy on the Traceability of Measurement Results (2013). ILAC. Available at: http://www.enao-eth.org/publication_documents/ILAC_P10_01_2013%20ILAC%20Policy%20on%20Traceability%20of%20Measurement%20Results.pdf
  4. DSTU ISO/IEC 17025:2006. General requirements for the competence of testing and calibration laboratories (ISO/IEC 17025:2005, IDT) (2007). Kyiv: Derzhspozhyvstandart Ukrainy, 32.
  5. DSTU EN ISO/IEC 17043:2014. Otsinka vidpovidnosti. Zahalni vymohy do perevirky kvalifikatsiyi laboratoriy (EN ISO/IEC 17043:2010, IDT) (2014). Kyiv: Minekonomrozvytku Ukrainy, 21.
  6. Velychko, O., Gordiyenko, T. (2018). Linking Results of International Comparisons of the National Standard and the National Inter-Laboratory Comparisons. Journal of Physics: Conference Series, 1065, 072004. doi: https://doi.org/10.1088/1742-6596/1065/7/072004
  7. Velychko, O., Shevkun, S., Gordiyenko, T., Mescheriak, O. (2018). Interlaboratory comparisons of the calibration results of time meters. Eastern-European Journal of Enterprise Technologies, 1 (9 (91)), 4–11. doi: https://doi.org/10.15587/1729-4061.2018.121089
  8. Velychko, O., Gordiyenko, T. (2010). The implementation of general international guides and standards on regional level in the field of metrology. Journal of Physics: Conference Series, 238, 012044. doi: https://doi.org/10.1088/1742-6596/238/1/012044
  9. Velychko, O., Gordiyenko, T. (2015). The estimation of the measurement results with using statistical methods. Journal of Physics: Conference Series, 588, 012017. doi: https://doi.org/10.1088/1742-6596/588/1/012017
  10. Еfremova, N. Yu., Chunovkina, A. G. (2007). Opyt ocenivaniya dannyh mezhlaboratornyh slicheniy kalibrovochnyh i poverochnyh laboratoriy. Izmeritel'naya tekhnika, 6, 15–21.
  11. Claudio, J., Costa, M. (2012). Brazilian energy interlaboratory program applicative. XX IMEKO World Congress “Metrology for Green Growth”. Busan, 6.
  12. Sandu, I., Dragomir, L., Pantelimon, B. (2007). Interlaboratory comparison. 15th IMEKO TC 4 Symposium on Novelties in Electrical Measurements and Instrumentations. Iasi, 4.
  13. Sousa, J. J. L., Leitão, L. T. S., Costa, M. M., Faria, M. C. (2012). Considerations on the influence of travelling standards instability in an interlaboratory comparison program. XX IMEKO World Congress “Metrology for Green Growth”. Busan, 4.
  14. Poenaru, M. M., Iacobescu, F., Anghel, A.-C., Sălceanu, A., Anghel, M.-A. (2016). Active power quality assessment through interlaboratories comparison. 21th IMEKO TC4 International Symposium “Understanding the World through Electrical and Electronic Measurement”. Budapest, 224–228.
  15. Poenaru, M. M., Iacobescu, F., Anghel, M.-A. (2017). Length сalibration Quality assessment through Interlaboratories Comparison. 22th IMEKO TC 4 Symposium “Supporting World development through electrical and electronic measurements”. Iasi, 20–26.
  16. Dierikx, E., Nestor, A., Melcher, J., Kölling, A., Callegaro, L. (2012). Final report on the supplementary comparison EURAMET.EM-S26: inductance measurements of 100 mH at 1 kHz (EURAMET project 816). Metrologia, 49 (1A), 01002–01002. doi: https://doi.org/10.1088/0026-1394/49/1a/01002
  17. Çayci, H. (2011). Final report on key comparison EURAMET.EM-K5.1 (EURAMET Project No. 687): Comparison of 50/60 Hz power. Metrologia, 48 (1A), 01009–01009. doi: https://doi.org/10.1088/0026-1394/48/1a/01009
  18. Johnson, L., Chua, W., Corney, A., Hsu, J., Sardjono, H., Lee, R. D. et. al. (2008). Final report on the APMP comparison of capacitance at 100 pF (APMP supplementary comparison APMP.EM-S7). Metrologia, 45 (1A), 01003–01003. doi: https://doi.org/10.1088/0026-1394/45/1a/01003
  19. Oldham, N., Nelson, T., Zhang, N. F., Liu, H. (2003). CCEM-K5 Comparison of 50/60 Hz power. Metrologia, 40 (1A), 01003–01003. doi: https://doi.org/10.1088/0026-1394/40/1a/01003
  20. DSTU ISO 13528:2014. Statystychni metody, shcho zastosovuiutsia pry perevirtsi kvalifikatsiyi laboratoriyi shliakhom mizhlaboratornykh porivnian (ISO 13528:2005, IDT) (2014). Kyiv: Minekonomrozvytku Ukrainy, 29.

Downloads

Published

2019-05-13

How to Cite

Velychko, O., Shevkun, S., Mescheriak, O., Gordiyenko, T., & Kursin, S. (2019). Interlaboratory comparisons of the calibration results of signal generator. Eastern-European Journal of Enterprise Technologies, 3(9 (99), 14–20. https://doi.org/10.15587/1729-4061.2019.166504

Issue

Section

Information and controlling system