Finding of bounded solutions to linear impulsive systems
DOI:
https://doi.org/10.15587/1729-4061.2019.178635Keywords:
differential equations, impulsive system, bounded solution, Green-Samoilenko function, regular solutionAbstract
The problem of the existence of bounded on the entire real axis solutions to linear nonhomogeneous systems of differential equations undergoing impulsive perturbations at the fixed moments of time is investigated. Sufficient conditions for the hyperbolicity of solutions to the homogeneous multidimensional impulsive system are obtained. The derived conditions are applied to the study of the bounded solutions to the nonhomogeneous impulsive system. Sufficient conditions for the existence of a unique bounded solution to the nonhomogeneous system in the case of weak regularity of the corresponding homogeneous system are formulated. The advantage of such an approach is that the established conditions can be effectively tested for specific classes of impulse-perturbed systems, since they are formulated in terms of coefficients of initial problems. The obtained conditions allow applying classical solution methods of differential equations for the propositions on solvability and continuous dependence of solutions on parameters of the impulsive systems.
The theory of systems with impulsive actions has wide possibilities for its application. Many evolution processes in physics, engineering, automatic control, biology, economics are exposed to short-term perturbations during their evolution. For example, processes with abrupt changes are observed in mechanics (spring movement under shock influence, functioning of the clock mechanism, change of rocket speed at separation stages), in radio engineering (generation of impulses of various forms). Similar processes are also observed in biology (heart beat, cell division), biotechnology (growing biocomposites), and control theory (industrial robots).
Therefore, qualitative investigation of impulsive systems in this work is a relevant challenge of the modern theory of mathematical modelingReferences
- Anashkin, O. V., Dovzhik, T. V., Mit'ko, O. V. (2010). Ustoychivost' resheniy differentsial'nyh uravneniy pri nalichii impul'snyh vozdeystviy. Dinamicheskie sistemy, 28, 3–10.
- Wang, Y., Lu, J. (2020). Some recent results of analysis and control for impulsive systems. Communications in Nonlinear Science and Numerical Simulation, 80, 104862. doi: https://doi.org/10.1016/j.cnsns.2019.104862
- Dashkovskiy, S., Feketa, P., Kapustyan, O., Romaniuk, I. (2018). Invariance and stability of global attractors for multi-valued impulsive dynamical systems. Journal of Mathematical Analysis and Applications, 458 (1), 193–218. doi: https://doi.org/10.1016/j.jmaa.2017.09.001
- Asrorov, F., Perestyuk, Y., Feketa, P. (2017). On the stability of invariant tori of a class of dynamical systems with the Lappo–Danilevskii condition. Memoirs on Differential Equations and Mathematical Physics, 72, 15–25.
- Kapustyan, O. V., Asrorov, F. A., Perestyuk, Y. M. (2019). On the Exponential Stability of a Trivial Torus for One Class of Nonlinear Impulsive Systems. Journal of Mathematical Sciences, 238 (3), 263–270. doi: https://doi.org/10.1007/s10958-019-04234-9
- Kapustian, O. A., Sobchuk, V. V. (2018). Approximate Homogenized Synthesis for Distributed Optimal Control Problem with Superposition Type Cost Functional. Statistics, Optimization & Information Computing, 6 (2), 233–239. doi: https://doi.org/10.19139/soic.v6i2.305
- Bonotto, E. M., Bortolan, M. C., Caraballo, T., Collegari, R. (2016). Impulsive non-autonomous dynamical systems and impulsive cocycle attractors. Mathematical Methods in the Applied Sciences, 40 (4), 1095–1113. doi: https://doi.org/10.1016/j.jde.2016.11.036
- Bonotto, E. M., Gimenes, L. P., Souto, G. M. (2017). Asymptotically almost periodic motions in impulsive semidynamical systems. Topological Methods in Nonlinear Analysis, 49 (1), 133–163. doi: https://doi.org/10.12775/tmna.2016.065
- Dashkovskiy, S., Feketa, P. (2017). Input-to-state stability of impulsive systems and their networks. Nonlinear Analysis: Hybrid Systems, 26, 190–200. doi: https://doi.org/10.1016/j.nahs.2017.06.004
- Iovane, G., Kapustyan, A. V., Valero, J. (2008). Asymptotic behaviour of reaction–diffusion equations with non-damped impulsive effects. Nonlinear Analysis: Theory, Methods & Applications, 68 (9), 2516–2530. doi: https://doi.org/10.1016/j.na.2007.02.002
- Perestyuk, M. O., Kapustyan, O. V. (2012). Long-time behavior of evolution inclusion with non-damped impulsive effects. Memoirs of Differential equations and Mathematical physics, 56, 89–113.
- Kapustyan, O. V., Perestyuk, M. O. (2016). Global Attractors in Impulsive Infinite-Dimensional Systems. Ukrainian Mathematical Journal, 68 (4), 583–597. doi: https://doi.org/10.1007/s11253-016-1243-0
- Izhikevich, E. M. (2006). Dynamical systems in neuroscience: The geometry of excitability and bursting. MIT Press. doi: https://doi.org/10.7551/mitpress/2526.001.0001
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2019 Фарход Анварович Асроров
This work is licensed under a Creative Commons Attribution 4.0 International License.
The consolidation and conditions for the transfer of copyright (identification of authorship) is carried out in the License Agreement. In particular, the authors reserve the right to the authorship of their manuscript and transfer the first publication of this work to the journal under the terms of the Creative Commons CC BY license. At the same time, they have the right to conclude on their own additional agreements concerning the non-exclusive distribution of the work in the form in which it was published by this journal, but provided that the link to the first publication of the article in this journal is preserved.
A license agreement is a document in which the author warrants that he/she owns all copyright for the work (manuscript, article, etc.).
The authors, signing the License Agreement with TECHNOLOGY CENTER PC, have all rights to the further use of their work, provided that they link to our edition in which the work was published.
According to the terms of the License Agreement, the Publisher TECHNOLOGY CENTER PC does not take away your copyrights and receives permission from the authors to use and dissemination of the publication through the world's scientific resources (own electronic resources, scientometric databases, repositories, libraries, etc.).
In the absence of a signed License Agreement or in the absence of this agreement of identifiers allowing to identify the identity of the author, the editors have no right to work with the manuscript.
It is important to remember that there is another type of agreement between authors and publishers – when copyright is transferred from the authors to the publisher. In this case, the authors lose ownership of their work and may not use it in any way.