Development of the technology for obtaining engobed construction articles with the "antiquity" effect

Authors

DOI:

https://doi.org/10.15587/1729-4061.2019.180367

Keywords:

ceramic facing bricks, engobe, decorative coating, water absorption, manganese ore, annealing of building ceramics

Abstract

The physical and chemical processes that occur when obtaining engobe coatings for construction ceramics with the decorative "antiquity" effect were considered, the composition of the charge, the technology of manufacturing and applying of the coatings on a ceramic product were proposed. The coatings have dark brownish-lilac color with a volumetric effect of light "variability". Engobes can be used when decorating the front ceramic bricks of single annealing with keeping at the maximum temperature of 1,070 °C.

It was found that to provide a gradient volumetric decorative effect, it is recommended to introduce in the composition of engobe charge the microspheres of TPP fly ash in the amount of 3–5 %, and for the thick brown-lilac color – up to 60 % by weight of manganese ore. To ensure the necessary rheological indicators of the engobe slip and its high adhesion capacity, the fineness of grinding of charge components should be not more than 1 % by the residue on sieve No. 0063. The moisture content of the slip is 45 % and fluidity is 18 s.

The mechanisms of shrinkage processes of engobe coatings and the ceramic base at different methods for application of the engobe slip on the product were established. To decrease the difference of shrinkage of the coating and ceramics, it is recommended to apply the engobe slip of the developed composition on the dried ceramic semi-finished product.

After annealing at 1,070 °C, the products are of high quality with the indicator of water absorption of the coating of 5.2–5.4 % and hardness of ~5 by the Mohs scale.

The obtained data can be applied in modeling of processes of engobing the products and in the development of compositions of engobe coatings. The practical value of the results consists in creating a new kind of the decorated building products, which enables increasing the market of its sales and enhancing the competitive capacity

Author Biographies

Olena Khomenko, Ukrainian State University of Chemical Engineering Gagarina ave., 8, Dnipro, Ukraine, 49005

PhD, Associate Professor

Department of Chemical Technology of Ceramics and Glass

Borys Datsenko, PJSC SBK Mykilsko-Slobidska str., 2B, Kyiv, Ukraine, 02002

PhD, Associate Professor, Senior Researcher, Head of Department

Department of Product Development and Technology

Nataliia Sribniak, Sumy National Agrarian University Herasyma Kondratieva str., 160, Sumy, Ukraine, 40021

PhD, Associate Professor

Department of Building Structures

Oleksandr Zaichuk, Ukrainian State University of Chemical Technology Gagarina ave., 8, Dnipro, Ukraine, 49005

Doctor of Technical Sciences, Associate Professor

Department of Chemical Technology of Ceramics and Glass

Mykola Nahornyi, Sumy National Agrarian University Herasyma Kondratieva str., 160, Sumy, Ukraine, 40021

PhD, Associate Professor, Dean

Department of Сonstruction Operations

References

  1. Nestertsov, A. I. (2004). Underglaze engobe for ceramic facing tiles. Glass and Ceramics, 61 (11-12), 413–414. doi: https://doi.org/10.1007/s10717-005-0015-3
  2. Becker, E., Jiusti, J., Minatto, F. D., Delavi, D. G. G., Montedo, O. R. K., Noni Jr., A. de. (2017). Use of mechanically-activated kaolin to replace ball clay in engobe for a ceramic tile. Cerâmica, 63(367), 295–302. doi: https://doi.org/10.1590/0366-69132017633672077
  3. Nandi, V. S., Raupp-Pereira, F., Montedo, O. R. K., Oliveira, A. P. N. (2015). The use of ceramic sludge and recycled glass to obtain engobes for manufacturing ceramic tiles. Journal of Cleaner Production, 86, 461–470. doi: https://doi.org/10.1016/j.jclepro.2014.08.091
  4. Luangnaem, C., Sathonsaowaphak, A., Kamon-In, O., Pimraksa, K. (2014). Development of Engobe Samples for Dan Kwian Ceramic Body. Key Engineering Materials, 608, 325–330. doi: https://doi.org/10.4028/www.scientific.net/kem.608.325
  5. Khomenko, O., Sribniak, N., Dushyn, V., Shushkevych, V. (2018). Analysis of the interaction between properties and microstructure of construction ceramics. Eastern-European Journal of Enterprise Technologies, 4 (6 (94)), 16–25. doi: https://doi.org/10.15587/1729-4061.2018.140571
  6. Yatsenko, N. D., Rat’kova, É. O. (2009). Engobes for ceramic brick. Glass and Ceramics, 66 (3-4), 93–94. doi: https://doi.org/10.1007/s10717-009-9144-4
  7. Zorigt, S., Jadamba, Ts., Tsevel, S. (2012). Synthesis and structural studies of face engobe layer's mass. 2012 7th International Forum on Strategic Technology (IFOST). doi: https://doi.org/10.1109/ifost.2012.6357603
  8. Ovčačíková, H., Vlček, J., Klárová, M., Topinková, M. (2017). Metallurgy dusts as a pigment for glazes and engobes. Ceramics International, 43 (10), 7789–7796. doi: https://doi.org/10.1016/j.ceramint.2017.03.091
  9. Moreno, A., Bou, E., Navarro, M. C., García, J. (2000). Influencia de los materiales plásticos sobre las características de los engobes. I Tipo de material arcilloso. Boletín de La Sociedad Española de Cerámica y Vidrio, 39 (5), 617–621. doi: https://doi.org/10.3989/cyv.2000.v39.i5.778
  10. Vakalova, T. V., Revva, I. B., Pogrebenkov, V. M. (2007). Protective-decorative coatings for construction ceramics based on West Siberian natural raw material. Glass and Ceramics, 64 (1-2), 27–30. doi: https://doi.org/10.1007/s10717-007-0007-6
  11. Dal Bó, M., Boschi, A. O., Hotza, D. (2013). Cinética de sinterización y transporte de masa en engobes cerámicos. Boletín de La Sociedad Española de Cerámica y Vidrio, 52 (5), 237–241. doi: https://doi.org/10.3989/cyv.292013
  12. Khomenko, O., Alekseev, E. (2018). Development of a sol-gel technique for obtaining sintering activators for engobe coatings. Eastern-European Journal of Enterprise Technologies, 6 (6 (96)), 43–51. doi: https://doi.org/10.15587/1729-4061.2018.150606
  13. Moroz, B. I., Datsenko, B. M., Kolesnikova, I. V. (1984). Linear expansion of argillaceous mineral compositions. Glass and Ceramics, 41 (11), 505–508. doi: https://doi.org/10.1007/bf00704679
  14. Guzman, I. Ya. (Ed.) (2005). Praktikum po tehnologii keramiki. Moscow, 334.
  15. Schilling, C. H. (2001). Plastic Forming. Encyclopedia of Materials: Science and Technology, 7088–7092. doi: https://doi.org/10.1016/b0-08-043152-6/01256-0
  16. Fedorenko, E. Y., Ryshchenko, M. I., Daineko, E. B., Chirkina, M. A. (2013). Energy-saving technology for household porcelain. Glass and Ceramics, 70 (5-6), 219–222. doi: https://doi.org/10.1007/s10717-013-9547-0
  17. Mattisson, T., Sundqvist, S., Moldenhauer, P., Leion, H., Lyngfelt, A. (2019). Influence of heat treatment on manganese ores as oxygen carriers. International Journal of Greenhouse Gas Control, 87, 238–245. doi: https://doi.org/10.1016/j.ijggc.2019.05.027
  18. Esmeray, E., Atıs, M. (2019). Utilization of sewage sludge, oven slag and fly ash in clay brick production. Construction and Building Materials, 194, 110–121. doi: https://doi.org/10.1016/j.conbuildmat.2018.10.231
  19. Khomenko, E. S., Purdik, A. V. (2017). Particulars of Microstructure Formation in Clinker Ceramic. Glass and Ceramics, 74 (1-2), 48–51. doi: https://doi.org/10.1007/s10717-017-9926-z
  20. Chatterjee, S., Jung, I.-H. (2014). Critical evaluation and thermodynamic modeling of the Al–Mn–O (Al2O3–MnO–Mn2O3) system. Journal of the European Ceramic Society, 34 (6), 1611–1621. doi: https://doi.org/10.1016/j.jeurceramsoc.2013.12.017

Downloads

Published

2019-10-09

How to Cite

Khomenko, O., Datsenko, B., Sribniak, N., Zaichuk, O., & Nahornyi, M. (2019). Development of the technology for obtaining engobed construction articles with the "antiquity" effect. Eastern-European Journal of Enterprise Technologies, 5(6 (101), 6–13. https://doi.org/10.15587/1729-4061.2019.180367

Issue

Section

Technology organic and inorganic substances