Procedure for modeling dynamic processes of the electromechanical shock absorber in a subway car
DOI:
https://doi.org/10.15587/1729-4061.2019.181117Keywords:
electromechanical shock absorber, subway car, Chebyshev polynomials, finite-element method, Lagrange equationAbstract
A procedure has been devised for modeling the dynamic processes in the proposed structure of an electromechanical shock absorber. Such shock absorbers can recuperate a part of the energy of oscillations into electrical energy allowing the subsequent possibility to use it by rolling stock. The procedure is based on solving the Lagrange equation for the electromechanical system. The model's features are as follows. The model takes the form of a Cauchy problem, thereby making it possible to use it when simulating the processes of shock absorber operation. Two generalized coordinates have been selected (the charge and displacement of the armature). The components of the Lagrange equation have been identified. Based on the results from magnetic field calculation and subsequent regression analysis, we have derived polynomial dependences of flux linkage derivatives for the current and linear displacement of an armature, which make it possible to identify a generalized mathematical model of the electromechanical shock absorber. The magnetic field calculations, performed by using a finite-element method, have allowed us to derive a digital model of the magnetic field of an electromechanical shock absorber. To obtain its continuous model, a regression analysis of discrete field models has been conducted. When choosing a structure for the approximating model, a possibility to analytically differentiate partial derivatives for all coordinates has been retained. Based on the results from modeling free oscillations, it was established that the maximum module value of current is 0.234 A, voltage – 52.9 V. The process of full damping of oscillations takes about 3 seconds over 4 cycles. Compared to the basic design, the amplitude of armature oscillations and its velocity dropped from 13 to 85 % over the first three cycles, indicating a greater efficiency of electromechanical shock absorber operation in comparison with a hydraulic one. The recuperated energy amounted to 3.3 J, and the scattered energy – 11.5 J.
References
- Serdobintsev, E. V., Ye Win Han (2013). Vertical Oscillations of the Metro Wagon with Pneumatic Suspension. Mir transporta, 2, 78–84.
- Liubarskyi, B., Lukashova, N., Petrenko, O., Pavlenko, T., Iakunin, D., Yatsko, S., Vashchenko, Y. (2019). Devising a procedure to choose optimal parameters for the electromechanical shock absorber for a subway car. Eastern-European Journal of Enterprise Technologies, 4 (5 (100)), 16–25. doi: https://doi.org/10.15587/1729-4061.2019.176304
- Serdobintsev, E., Zvantsev, P., Ye Win Han (2014). Choice of parameters for a metro coach with pneumatic springs. Mir transporta, 1, 34–41.
- Lukashova, N., Pavlenko, T., Liubarskyi, B., Petrenko, O. (2018). Analysis of constructions of resports lingings of rail city electric mobile composition. Systemy upravlinnia, navihatsiyi ta zviazku. Zbirnyk naukovykh prats, 5 (51), 65–68. doi: https://doi.org/10.26906/sunz.2018.5.065
- Passazhirskoe vagonostroenie. Katalog. Kryukovskiy vagonostroitel'niy zavod. Available at: http://www.kvsz.com/images/catalogs/tsn.pdf
- Kolpakhch’yan, P. G., Shcherbakov, V. G., Kochin, A. E., Shaikhiev, A. R. (2017). Sensorless control of a linear reciprocating switched-reluctance electric machine. Russian Electrical Engineering, 88 (6), 366–371. doi: https://doi.org/10.3103/s1068371217060086
- Forster, N., Gerlach, A., Leidhold, R., Buryakovskiy, S., Masliy, A., Lyubarskiy, B. G. (2018). Design of a Linear Actuator for Railway Turnouts. IECON 2018 - 44th Annual Conference of the IEEE Industrial Electronics Society. doi: https://doi.org/10.1109/iecon.2018.8591471
- Sergienko, A. N. (2013). Matematicheskaya model' kolebaniy v hodovoy sisteme avtomobilya s elektromagnitnym dempfirovaniem. Visnyk Natsionalnoho tekhnichnoho universytetu "KhPI". Ser.: Transportne mashynobuduvannia, 31, 86–93.
- Gysen, B. L. J., van der Sande, T. P. J., Paulides, J. J. H., Lomonova, E. A. (2011). Efficiency of a Regenerative Direct-Drive Electromagnetic Active Suspension. IEEE Transactions on Vehicular Technology, 60 (4), 1384–1393. doi: https://doi.org/10.1109/tvt.2011.2131160
- Sulym, A. O., Fomin, O. V., Khozia, P. O., Mastepan, A. G. (2018). Theoretical and practical determination of parameters of on-board capacitive energy storage of the rolling stock. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, 5, 79–87. doi: https://doi.org/10.29202/nvngu/2018-5/8
- Kolpakhchyan, P. G., Shcherbakov, V. G., Kochin, A. E., Shaikhiev, A. R. (2017). Mathematical simulation and parameter determination of regulation of a linear electrical reciprocating machine. Russian Electrical Engineering, 88 (5), 259–264. doi: https://doi.org/10.3103/s1068371217050054
- 10.1007/978-3-319-51502-1_3Kolpakhchyan, P., Zarifian, A., Andruschenko, A. (2017). Systems Approach to the Analysis of Electromechanical Processes in the Asynchronous Traction Drive of an Electric Locomotive. Studies in Systems, Decision and Control, 67–134. doi: https://doi.org/10.1007/978-3-319-51502-1_3
- Rymsha, V. V., Radimov, I. N., Gulyy, M. V., Kravchenko, P. A. (2010). An advanced chain-field model of a switched reluctance motor. Elektrotekhnika i Elektromekhanika, 5, 24–26.
- Buriakovskyi, S., Liubarskyi, B., Maslii, A., Pomazan, D., Panchenko, V., Maslii, A. (2019). Mathematical Modelling of Prospective Transport Systems Electromechanical Energy Transducers on Basis of the Generalized Model. 2019 9th International Conference on Advanced Computer Information Technologies (ACIT). doi: https://doi.org/10.1109/acitt.2019.8779998
- Meeker, D. (2013). Finite Element Method Magnetics: Magnetics Tutorial. Available at: http://www.femm.info/wiki/MagneticsTutorial
- Kolpakhch’yan, P. G., Shcherbakov, V. G., Kochin, A. E., Shaikhiev, A. R. (2017). Sensorless control of a linear reciprocating switched-reluctance electric machine. Russian Electrical Engineering, 88 (6), 366–371. doi: https://doi.org/10.3103/s1068371217060086
- Riabov, I., Liubarskyi, B. (2018). Determination of Phase Flux-Linkage of Flux Switching Motor with Spatial Magnetic System. 2018 International Conference on Industrial Engineering, Applications and Manufacturing (ICIEAM). doi: https://doi.org/10.1109/icieam.2018.8728773
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2019 Borys Liubarskyi, Natalia Lukashova, Oleksandr Petrenko, Bagish Yeritsyan, Yuliia Kovalchuk, Liliia Overianova
This work is licensed under a Creative Commons Attribution 4.0 International License.
The consolidation and conditions for the transfer of copyright (identification of authorship) is carried out in the License Agreement. In particular, the authors reserve the right to the authorship of their manuscript and transfer the first publication of this work to the journal under the terms of the Creative Commons CC BY license. At the same time, they have the right to conclude on their own additional agreements concerning the non-exclusive distribution of the work in the form in which it was published by this journal, but provided that the link to the first publication of the article in this journal is preserved.
A license agreement is a document in which the author warrants that he/she owns all copyright for the work (manuscript, article, etc.).
The authors, signing the License Agreement with TECHNOLOGY CENTER PC, have all rights to the further use of their work, provided that they link to our edition in which the work was published.
According to the terms of the License Agreement, the Publisher TECHNOLOGY CENTER PC does not take away your copyrights and receives permission from the authors to use and dissemination of the publication through the world's scientific resources (own electronic resources, scientometric databases, repositories, libraries, etc.).
In the absence of a signed License Agreement or in the absence of this agreement of identifiers allowing to identify the identity of the author, the editors have no right to work with the manuscript.
It is important to remember that there is another type of agreement between authors and publishers – when copyright is transferred from the authors to the publisher. In this case, the authors lose ownership of their work and may not use it in any way.