Features of rotational modes of vibrations of water molecules in free and bound states

Authors

DOI:

https://doi.org/10.15587/1729-4061.2013.18184

Keywords:

bound water, rotational and librational vibrations, vibrational degrees of freedom, heat capacity

Abstract

The paper considers rotational (including librational - dimensional rotational) vibrations and the number of corresponding vibrational modes for molecules of water in its various physical phase states - liquid, ice and "bound". The main purpose of the research is comparative analysis of vibrational modes of molecules of water in different phase states, taking into account the results of previous paper [6] on vibrational modes of molecules in liquid water. The analysis of changes in the number of rotational modes of molecules of water for its various phase states and physical consequences of these changes for physical and thermal properties of water was conducted. Increased force of hydrogen bonds of water molecules in ice or bound ice-like state leads to reducing the number of rotational vibration modes, and accordingly, the number of degrees of freedom of molecules and heat capacity of the phase. State, mobility and structure of macromolecules in aqueous solutions are determined by the strength of ice-like "skeleton/corset" of their hydration shell formed by "bound" water molecules.

Author Biographies

Николай Тимофеевич Малафаев, Kharkiv State University of Food Technology and Trade 333 Klochkivska st., Kharkiv, Ukraine, 61051

Docient

Department of Energetic and Physic

Николай Иванович Погожих, Kharkiv State University of Food Technology and Trade Klochkivska str., 333, Kharkiv, Ukraine, 61051

Professor, head of department

Department of Energetic and Physic

Егор Алексеевич Иштван, Kharkiv State University of Food technology and Trade

Assistant
Department of Energetic and Physic

References

  1. Антонченко, В. Я. Основы физики воды [Текст] / В. Я. Антонченко, А. С. Давыдов, В. В. Ильин. − К. : Наук. Думка, 1991. − 672 с.
  2. Eisenberg, D. The structure and properties of water [Text] / D. Eisenberg, W. Kauzmann. − Oxford University press, 2005. − 308 p.
  3. Angell, A. In Water: A Comprehensive Treatise [Text] / A. Angell; ed. F. Franks. − New York: Plenum Press, 1982. − vol. 7.
  4. Зацепина, Г. Н. Физические свойства и структура воды [Текст] / Г. Н. Зацепина. − 2-е изд. − М. : Изд-во МГУ, 1987. − 171 с.
  5. Mallett, C. Frozen Food Technology [Text] / C. Mallett. − London: Published by Springer, 2012. − 368 p.
  6. Малафаев, Н. Т. О взаимодействиях и динамике молекул в чистой воде [Текст] / Н. Т. Малафаев // Восточно-Европейский журнал передовых технологий. – 2011. – T. 4, № 8(52). – С. 48-58.
  7. Bersuker, I. The Jahn-Teller Effect and Vibronic Interactions in Modern Chemistry [Text] / I. Bersuker. – New York: Published by Plenum, 1984. – 319 p.
  8. Pullman, B. Intermolecular interactions: from diatoms to biopolimers [Text] / B. Pullman. – New York, 1978. – 447 p.
  9. Levy, Y. Water and proteins : a love-hate relationship [Text] / Y. Levy, J. Onuchic // Proceedings of the National Academy of Sciences of the United States of America. – 2004. – №101. – pp. 3325-3326.
  10. Schneider, B. Hydration of the phosphate group in double-helical DNA [Text] / B. Schneider, K. Patel, H. Berman // Biophysical Journal. – 1998. – №75. – pp. 2422-2434.
  11. Ebbinghaus, S. An extended dynamical hydration shell around proteins [Text] / S. Ebbinghaus, S. Kim, M. Heyden, X. Yu, U. Heugen, M. Gruebele, D. Leitner, M. Havenith // Current Issue. – 2007. – №104(52). – pp. 20749–20752.
  12. Frauenfelder, H. The role of structure, energy landscape, dynamics, and allostery in the enzymatic function of myoglobin [Text] / H. Frauenfelder, B. McMahon, R. Austin, K. Chu, J. Groves // Proceedings of the National Academy of Sciences of the United States of America. – 2001. – №98(5). – pp. 2370-2374.
  13. Antonchenko, V. Ya., Davydov, А. S., Iliin, V. V. (1991). Оsnovy fizyky vody. К.: Nauk. Dumka, 672.
  14. Eisenberg, D., Kauzmann, W. (2005). The structure and properties of water. Oxford University press, 308.
  15. Angell, A.; In: Franks, F. (1982). In Water: A Comprehensive Treatise. New York: Plenum Press, vol. 7.
  16. Zatsеpina, H. N. (1987). Fizycheskie svoystva I struktura vody. Ed. 2. М.: Izd-vо МHU, 171.
  17. Mallett, C. (2012). Frozen Food Technology. London: Springer Press, 368.
  18. Malafaev, N. (2011). About interactions and dynamics of molecules in pure water. Eastern-European Journal Of Enterprise Technologies, 4(8(52)), 48-58.
  19. Bersuker, I. (1984). The Jahn-Teller Effect and Vibronic Interactions in Modern Chemistry. New York: Plenum Press, 319.
  20. Pullman, B. (1978). Intermolecular interactions: from diatoms to biopolimers. New York, 447.
  21. Levy, Y., Onuchic, J. (2004). Water and proteins: a love-hate relationship. Proceedings of the National Academy of Sciences of the United States of America, 101, 3325-3326.
  22. Schneider, B., Patel, K., Berman, H. (1998). Hydration of the phosphate group in double-helical DNA. Biophysical Journal, 75, 2422-2434.
  23. Ebbinghaus, S., Kim, S., Heyden, M., Yu, X., Heugen, U., Gruebele, M., Leitner, D., Havenith, M. (2007). An extended dynamical hydration shell around proteins. Current Issue, 104(52), 20749–20752.
  24. Frauenfelder, H., McMahon, B., Austin, R., Chu, K., Groves, J. (2001). The role of structure, energy landscape, dynamics, and allostery in the enzymatic function of myoglobin. Proceedings of the National Academy of Sciences of the United States of America, 98(5), 2370-2374.

Published

2013-10-28

How to Cite

Малафаев, Н. Т., Погожих, Н. И., & Иштван, Е. А. (2013). Features of rotational modes of vibrations of water molecules in free and bound states. Eastern-European Journal of Enterprise Technologies, 5(6(65), 11–15. https://doi.org/10.15587/1729-4061.2013.18184

Issue

Section

Technology organic and inorganic substances