Forming a мetodology for transforming a model as the basis for expanding its informativeness

Authors

DOI:

https://doi.org/10.15587/1729-4061.2019.181866

Keywords:

nonlinear vector-function, recurrent model, informational attributes, analytical expressions, error estimation, boundary iteration, adequacy estimation

Abstract

A problem on building the methodology for transforming the implicit form of a model has been stated and solved, which improves the efficiency of replacing complex nonlinear forms of mathematical models to reducing them to a recurrent sequence in the form of analytical expressions that allow quick express calculations.

New explicit forms of the models have been proposed that make it possible to use recurrent sequences for representing a solution to the problem and forming an error estimation expression, as well as and additional information. Given the fact that for many attributes the solution and an error estimation are critical, the analyticity of expressions reveals new properties and possibilities. Based on such factors as authenticity, accuracy, depth, materiality and completeness, the adequacy of the model is represented by a single analytical expression that would make it possible in future to simplify the process of comparison through the use of quantitative methods. Representation of transformations, according to which the connection between the error of two consecutive approximations and dependence on the approximation number was established, is predetermined by the necessity to analyze convergence dynamics based on the iteration number. Another variant, not less important, which can characterize the dynamics of convergence is the connection between an error of the first approximation and the arbitrary approximation. Based on the overall expansion of the implicit form of the model and the mean value theorem, the relationship between the two consecutive errors or norms has been established. It is demonstrated that if the error or a norm of error are assigned, the estimates for the first and second derivatives would make it possible to determine the boundary number of the iteration starting from which the error is less than the assigned one.

An example has been given for deriving an estimation for the general model of the magnitude of a maximally possible error, the boundary number of the iteration, starting from which the error acquires a value less than the assigned one. A comprehensive analytical assessment of adequacy based on a single expression has also been derived.

Representation of informational attributes in the quantitative form is predetermined by new opportunities that would emerge due to the obtained tools for quantitative analysis.

Numerical modelling has been performed; the character of dynamics of new informational indicators and attributes has been examined. The data given for nine iterations demonstrate efficiency and completeness of information to perform a quick analysis and draw a conclusion. Based on the dynamics of quantitative attributes for a relative error, as well as new ones, proposed based on the results from implementing the model transformation methodology, it has been shown that the possibilities emerge to run a quick analysis and draw a conclusion. It was demonstrated that the introduced attributes expand the informativeness of the methodology implementation for the further representation of a nonlinear model in the form of a recurrent sequence

Author Biography

Alexander Trunov, Petro Mohyla Black Sea National University 68 Desantnykiv str., 10, Mykolaiv, Ukraine, 54003

Doctor of Technical Sciences, Professor, Head of Department

Department of Automation and Computer-Integrated Technologies

References

  1. Glushkov, V. M. (1974). Vvedenie v ASU. Kyiv: Tehnika, 312.
  2. Tolk, A. (2015). Learning Something Right from Models That Are Wrong: Epistemology of Simulation. Simulation Foundations, Methods and Applications, 87–106. doi: https://doi.org/10.1007/978-3-319-15096-3_5
  3. Petrov, K. E., Kryuchkovskiy, V. V. (2009). Komparatornaya strukturno-parametricheskaya identifikatsiya modeley skalyarnogo mnogofaktornogo otsenivaniya. Herson: Oldi-plyus, 294.
  4. Fisun, M. T. (1987). Avtomatizatsiya protsesov proektirovanya ASUP v sudostroenii. Leningrad: Sudostroenie, 78.
  5. Hodakov, V. E., Sokolova, N. A., Kiriychuk, D. L. (2014). O razvitii osnov teorii koordinatsii slozhnyh sistem. Problemy informatsiynykh tekhnolohiy, 2, 12–22.
  6. Trunov, A. (2016). Criteria for the evaluation of model's error for a hybrid architecture DSS in the underwater technology ACS. Eastern-European Journal of Enterprise Technologies, 6 (9 (84)), 55–62. doi: https://doi.org/10.15587/1729-4061.2016.85585
  7. Kupin, A., Kuznetsov, D., Muzyka, I., Paraniuk, D., Serdiuk, O., Suvorov, O., Dvornikov, V. (2018). The concept of a modular cyberphysical system for the early diagnosis of energy equipment. Eastern-European Journal of Enterprise Technologies, 4 (2 (94)), 71–79. doi: https://doi.org/10.15587/1729-4061.2018.139644
  8. Zhuravska, I. (2017). Automatized system of large-size cargo registrations based on devices with limited computing capabilities. Electrical and computer systems, 26, 60–67.doi: https://doi.org/10.15276/eltecs.26.102.2017.7
  9. Trunov, A. (2017). Recurrent transformation of the dynamics model for autonomous underwater vehicle in the inertial coordinate system. Eastern-European Journal of Enterprise Technologies, 2 (4 (86)), 39–47. doi: https://doi.org/10.15587/1729-4061.2017.95783
  10. Kudin, V., Onyshchenko, A., Onyshchenko, I. (2019). Algorithmizing the methods of basis matrices in the study of balace intersectoral ecological and economic models. Eastern-European Journal of Enterprise Technologies, 3 (4 (99)), 45–55. doi: https://doi.org/10.15587/1729-4061.2019.170516
  11. Fisun, M., Smith, W., Trunov, A. (2017). The vector rotor as instrument of image segmentation for sensors of automated system of technological control. 2017 12th International Scientific and Technical Conference on Computer Sciences and Information Technologies (CSIT). doi: https://doi.org/10.1109/stc-csit.2017.8098828
  12. Trunov, A., Fisun, M., Malcheniuk, A. (2018). The processing of hyperspectral images as matrix algebra operations. 2018 14th International Conference on Advanced Trends in Radioelecrtronics, Telecommunications and Computer Engineering (TCSET). doi: https://doi.org/10.1109/tcset.2018.8336305
  13. Fisun, M. T., Kravets, I. O. Kazmirchuk, P. P., Nikolenko, S. H. (2016). Intelektualnyi analiz danykh. Lviv: Novyi svit-2000, 160.
  14. Fradkov, A. L. (2005). Application of cybernetic methods in physics. Uspekhi Fizicheskih Nauk, 175 (2), 113–138. doi: https://doi.org/10.3367/ufnr.0175.200502a.0113
  15. Trunov, A. (2016). Realization of the paradigm of prescribed control of a nonlinear object as the problem on maximization of adequacy. Eastern-European Journal of Enterprise Technologies, 4 (4 (82)), 50–58. doi: https://doi.org/10.15587/1729-4061.2016.75674
  16. Fisun, M. T., Zhuravska, I. M., Horban, H. V. (2011). Intehratsiya danykh merezhevoho trafiku multiservisnoi korporatyvnoi merezhi z klasamy postreliatsiinoi SKBD Caché. Naukovi pratsi, 173 (161), 105–110.
  17. Banakh, S. (1948). Kurs funktsionalnoho analizu (liniyni operatsiyi). Kyiv: Radianska shkola, 216.
  18. Kantorovich, L. V., Krylov, V. I. (1962). Priblizhennye metody vysshego analiza. Moscow; Leningrad: Fizmatgiz, 708.
  19. Akilov, G. P., Kantorovich, L. V. (1984). Funktsional'niy analiz. Moscow: Nauka, 752.
  20. Kollatts, L. (1969). Funktsional'niy analiz i vychislitel'naya matematika. Moscow: Mir, 447.
  21. Kolmohorov, A. M., Fomin, S. V. (1974). Elementy teoriyi funktsiy i funktsionalnoho analizu. Kyiv: Vyshcha shkola, 455.
  22. Luchka, A. Yu., Luchka, T. F. (1985). Vozniknovenie i razvitie pryamyh metodov matematicheskoy fiziki. Kyiv: Naukova dumka, 239.
  23. Bellman, R. (1962). Quasi-linearization and upper and lower bounds for variational problems. Quarterly of Applied Mathematics, 19 (4), 349–350. doi: https://doi.org/10.1090/qam/130585
  24. Bellman, R. E., Kalaba, R. E. (1965). Quasilinearization and nonlinear boundary-value problems. Elsiver, 218.
  25. Traub, Dzh. (1985). Iteratsionnye metody resheniya uravneniy. Moscow: Mir, 264.
  26. Dzyadik, V. K. (1988). Approksimatsionnye metody resheniya differentsial'nyh i integral'nyh uravneniy. Kyiv: Naukova dumka, 304.
  27. Halley, E. (1694). A new, exact, and easy method of finding the roots of any equations generally, and that without any previous reduction. Philos. Trans. Roy. Soc. London, 18, 136–145.
  28. Trunov, O. M. (1999). Zastosuvannia metodu rekurentnoi aproksymatsiyi do rozviazku neliniynykh zadach. Naukovi pratsi, ІІІ, 135–142.
  29. Shebanin, V., Atamanyuk, I., Kondratenko, Y., Volosyuk, Y. (2017). Canonical mathematical model and information technology for cardio-vascular diseases diagnostics. 2017 14th International Conference The Experience of Designing and Application of CAD Systems in Microelectronics (CADSM). doi: https://doi.org/10.1109/cadsm.2017.7916170
  30. Tranter, K. D. (1956). Integral'nye preobrazovaniya v matematicheskoy fizike. Moscow: Gostehizdat, 204.
  31. Dronyuk, I., Nazarkevych, M., Poplavska, Z. (2017). Gabor Filters Generalization Based on Ateb-Functions for Information Security. Man-Machine Interactions 5, 195–206. doi: https://doi.org/10.1007/978-3-319-67792-7_20
  32. Dronyuk, I., Nazarkevych, M., Fedevych, O. (2016). Synthesis of Noise-Like Signal Based on Ateb-Functions. Distributed Computer and Communication Networks, 132–140. doi: https://doi.org/10.1007/978-3-319-30843-2_14
  33. Dronjuk, I., Nazarkevych, M., Troyan, O. (2016). The Modified Amplitude-Modulated Screening Technology for the High Printing Quality. Computer and Information Sciences, 270–276. doi: https://doi.org/10.1007/978-3-319-47217-1_29
  34. Kondratenko, Y. P., Kozlov, O. V. (2016). Mathematical Model of Ecopyrogenesis Reactor with Fuzzy Parametrical Identification. Studies in Fuzziness and Soft Computing, 439–451. doi: https://doi.org/10.1007/978-3-319-32229-2_30
  35. Zhuravska, I., Kulakovska, I., Musiyenko, M. (2018). Development of a method for determining the area of operation of unmanned vehicles formation by using the graph theory. Eastern-European Journal of Enterprise Technologies, 2 (3 (92)), 4–12. doi: https://doi.org/10.15587/1729-4061.2018.128745
  36. Petrov, E. G. (2014). Koordinatsionnoe upravlenie (menedzhment) protsessami realizatsii resheniy. Problemy informatsiynykh tekhnolohiy, 2, 6–11.
  37. Vasiukhin, M. I., Vasyliev, I. V., Lobanchykova, N. M. (2007). Interaktyvna avtomatyzovana heoinformatsiyna systema vysokoho rivnia bezpeky osoblyvo vazhlyvykh obiektiv. Naukovi pratsi Donetskoho natsionalnoho tekhnichnoho universytetu. Seriya: Obchysliuvalna tekhnika ta avtomatyzatsiya, 56–60.
  38. Vasyuhin, M. I., Kapshtyk, O. I., Kredentsar, S. M. (2008). Metod uskorennogo povorota slozhnogo simvola pri postroenii dinamicheskoy zritel'noy stseny v aeronavigatsionnyh geoinformatsionnyh sistemah real'nogo vremeni. Vestnik Hersonskogo natsional'nogo tehnicheskogo universiteta, 30, 281–287.
  39. Trunov, A. (2016). Recurrent approximation as the tool for expansion of functions and modes of operation of neural network. Eastern-European Journal of Enterprise Technologies, 5 (4 (83)), 41–48. doi: https://doi.org/10.15587/1729-4061.2016.81298
  40. Trunov, A., Belikov, A. (2015). Application of recurrent approximation to the synthesis of neural network for control of processes phototherapy. 2015 IEEE 8th International Conference on Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications (IDAACS). doi: https://doi.org/10.1109/idaacs.2015.7341389
  41. Trunov, A. (2016). Peculiarities of the interaction of electromagnetic waves with bio tissue and tool for early diagnosis, prevention and treatment. 2016 IEEE 36th International Conference on Electronics and Nanotechnology (ELNANO). doi: https://doi.org/10.1109/elnano.2016.7493041
  42. Trunov, A. (2017). Theoretical predicting the probability of electron detachment for radical of cell photo acceptor. 2017 IEEE 37th International Conference on Electronics and Nanotechnology (ELNANO). doi: https://doi.org/10.1109/elnano.2017.7939776
  43. Trunov, A., Malcheniuk, A. (2018). Recurrent network as a tool for calibration in automated systems and interactive simulators. Eastern-European Journal of Enterprise Technologies, 2 (9 (92)), 54–60. doi: https://doi.org/10.15587/1729-4061.2018.126498
  44. Trunov, A. (2015). An adequacy criterion in evaluating the effectiveness of a model design process. Eastern-European Journal of Enterprise Technologies, 1 (4 (73)), 36–41. doi: https://doi.org/10.15587/1729-4061.2015.37204
  45. Filaretov, V. F. (2000). Samonastraivayushchiesya sistemy upravleniya manіpulyatorami. Vladivostok: izd-vo DVGTU, 304.
  46. Trunov, A. (2018). Transformation of operations with fuzzy sets for solving the problems on optimal motion of crewless unmanned vehicles. Eastern-European Journal of Enterprise Technologies, 4 (4 (94)), 43–50. doi: https://doi.org/10.15587/1729-4061.2018.140641
  47. Batuner, L. A., Pozin, M. E. (1971). Matematicheskie metody v himicheskoy tehnike. Leningrad: Himiya, 824.
  48. Marchuk, G. I. (1977). Metody vychislitel'noy matematiki. Moscow: Nauka, 456.
  49. Ivahnenko, A. G. (1981). Induktivnyy metod samoorganizatsii modeley slozhnyh sistem. Kyiv: Naukova dumka, 296.
  50. Ivahnenko, A. G. (2005). Obraznoe myshlenie kak soglasovanie rezul'tatov deduktivnogo myshleniya i variantov induktivnogo myshleniya. Upravlyayushchie sistemy i mashiny, 2, 3–7.
  51. Madala, H. R. (2019). Inductive learning algorithms for complex systems modeling. CRC Press, 380. doi: https://doi.org/10.1201/9781351073493
  52. Ivahnenko, A. G., Savchenko, E. A., Ivahnenko, G. A., Sinyavskiy, V. L. (2007). Problemy induktivnogo dvuhurovnevogo monitoringa slozhnyh protsessov. Upravlyayushchie sistemy i mashiny, 3, 13–21.
  53. Krutys, P., Gomolka, Z., Twarog, B., Zeslawska, E. (2019). Synchronization of the vector state estimation methods with unmeasurable coordinates for intelligent water quality monitoring systems in the river. Journal of Hydrology, 572, 352–363. doi: https://doi.org/10.1016/j.jhydrol.2019.02.038
  54. Gil-Lafuente, A. M. (2005). Fuzzy Logic In Financial Analysis. Springer. doi: https://doi.org/10.1007/3-540-32368-6
  55. Dykhta, L., Kozub, N., Malcheniuk, A., Novosadovskyi, O., Trunov, A., Khomchenko, A. (2018). Construction of the method for building analytical membership functions in order to apply operations of mathematical analysis in the theory of fuzzy sets. Eastern-European Journal of Enterprise Technologies, 5 (4 (95)), 22–29. doi: https://doi.org/10.15587/1729-4061.2018.144193
  56. Solesvik, M., Kondratenko, Y., Kondratenko, G., Sidenko, I., Kharchenko, V., Boyarchuk, A. (2017). Fuzzy decision support systems in marine practice. 2017 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE). doi: https://doi.org/10.1109/fuzz-ieee.2017.8015471
  57. Ivahnenko, A. G., Stepashko, V. S. (1985). Pomehoustoychivost' modelirovaniya. Kyiv: Naukova dumka, 216.

Downloads

Published

2019-10-28

How to Cite

Trunov, A. (2019). Forming a мetodology for transforming a model as the basis for expanding its informativeness. Eastern-European Journal of Enterprise Technologies, 5(4 (101), 34–43. https://doi.org/10.15587/1729-4061.2019.181866

Issue

Section

Mathematics and Cybernetics - applied aspects