Determining the conditions for decreasing cutting force and temperature during machining

Authors

DOI:

https://doi.org/10.15587/1729-4061.2019.183882

Keywords:

machining quality and rate control, machining, cutting force and temperature

Abstract

The theoretical approach to calculating and controlling the force and temperature parameters of edge cutting and abrasive machining processes taking into account the provision of the minimum possible power consumption of the cutting process is given. The conditions for reducing cutting force and temperature and improving the quality and rate of grinding and edge cutting machining are theoretically determined. They consist mainly in reducing the relative shear angle of the machined material and, accordingly, power consumption by increasing the cutting capacity of the tool. It is analytically found that in grinding, cutting force and temperature are greater than in edge cutting machining due to the intense friction of the grinding wheel bond with the machined material and the presence of negative rake angles of cutting grains. It is shown that cutting temperature during grinding can be reduced using the multipass grinding pattern, as well as patterns of high-velocity creep-feed wheel-face and double-disc grinding. On this basis, the approach to creating technologies of effective high-velocity defect-free edge cutting and abrasive machining of machine parts and carbide cutting tools is developed.

The developed technology of form grinding on the modern HOFLER RAPID 1250 gear grinding machine using a special highly porous form abrasive wheel tapered on both sides received practical application. This wheel has a high cutting capacity in conditions of high-velocity creep-feed grinding. Compared to the conventional method of gear grinding by the generating process, carried out under conditions of multipass grinding, this allowed increasing machining rate up to 5 times. The technology of high-velocity creep-feed external grinding of multipoint carbide cutting tools (milling cutters, reamers) with high-strength metal-bonded diamond wheels using the electrical discharge dressing method is developed. This made it possible to increase the rate by 2–3 times and provide high-quality defect-free machining of carbide tools

Author Biographies

Fedir Nоvikоv, Simon Kuznets Kharkiv National University of Economics Nauky ave., 9-A, Kharkiv, Ukraine, 61166

Doctor of Technical Sciences, Professor

Department of Environmental Technologies, Ecology and Vital Safety

Vladimir Polyansky, Empire of metals Ltd Hryhorovske highway, 88, Kharkiv, Ukraine, 61020

PhD, Director

Valentin Shkurupiy, Empire of metals Ltd Hryhorovske highway, 88, Kharkiv, Ukraine, 61020

PhD, Associate Professor, Technology Consultant

Dmytro Novikov, Simon Kuznets Kharkiv National University of Economics Nauky ave., 9-A, Kharkiv, Ukraine, 61166

Postgraduate Student

Department of Economics and Marketing

Andrii Hutorov, NSC “Institute of Agrarian Economics” Heroiv Oborony str., 10, Kyiv, Ukraine, 03127

Doctor of Economic Sciences, Senior Researcher

Department of Management Organization and Public Administration

Yevhen Ponomarenko, LTD “Business Center “INGEK” Bakulina str., 4-A, Kharkiv, Ukraine, 61166

PhD, Associate Professor

Oksana О. Yermolenko, Simon Kuznets Kharkiv National University of Economics Nauky ave., 9-A, Kharkiv, Ukraine, 61166

PhD

Department of Public Administration and Regional Economics

Oleksii А. Yermolenko, Simon Kuznets Kharkiv National University of Economics Nauky ave., 9-A, Kharkiv, Ukraine, 61166

PhD, Associate Professor

Department of Economics and Social Sciences

References

  1. Stachurski, W., Midera, S., Kruszynski, B. (2012). Determination of Mathematical Formulae for the Cutting Force F C during the Turning of C45 Steel. Mechanics and Mechanical Engineering, 16 (2), 73–79.
  2. Siziy, Yu. A., Stalinskiy, D. V., Ushakov, A. N. (2009). O mgnovennoy temperature shlifovaniya. Visnyk Natsionalnoho tekhnichnoho universytetu «Kharkivskyi politekhnichnyi instytut», 2, 97–106.
  3. Lishchenko, N. V., Larshin, V. P. (2011). Model' temperaturnogo tsikla shlifovaniya dlya tehnologicheskoy diagnostiki protsessa. Visnyk Kharkivskoho natsionalnoho tekhnichnoho universytetu silskoho hospodarstva imeni Petra Vasylenka, 118, 185–193.
  4. Jin, T., Yi, J., Li, P. (2016). Temperature distributions in form grinding of involute gears. The International Journal of Advanced Manufacturing Technology, 88 (9-12), 2609–2620. doi: https://doi.org/10.1007/s00170-016-8971-z
  5. Yi, J., Jin, T., Deng, Z. (2019). The temperature field study on the three-dimensional surface moving heat source model in involute gear form grinding. The International Journal of Advanced Manufacturing Technology, 103 (5-8), 3097–3108. doi: https://doi.org/10.1007/s00170-019-03752-9
  6. Patil, R. A., Gombi, S. L. (2018). Experimental study of cutting force on a cutting tool during machining using inverse problem analysis. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 40 (10). doi: https://doi.org/10.1007/s40430-018-1411-2
  7. Firas M. F. Al Quran, F. M. F. A. Q. (2018). Theoretical Corroboration of the Selection Criteria of the Breaking-in and Shape-Copy Gear Teeth Grinding Methods. International Journal of Mechanical and Production Engineering Research and Development, 8 (1), 389–392. doi: https://doi.org/10.24247/ijmperdfeb201842
  8. Mohammad Essa Matarneh, M. E. M. (2018). Improvement of Abrasive and Edge Cutting Machining Efficiency through Theoretical Analysis of Physical Conditions. International Journal of Mechanical and Production Engineering Research and Development, 8 (2), 249–262. doi: https://doi.org/10.24247/ijmperdapr201828
  9. Kito, Y., Katsuma, T., Yanase, Y., Nose, Y. (2015). Latest Technologies for High-Precision, High-Efficiency Gear Grinding Processing. Mitsubishi Heavy Industries Technical Review, 52 (3), 5–8.
  10. Undewiss, S., Miller, B. (2010). Grinding large module gears. Gear solution, 35–45.
  11. Novikov, F. V., Andilakhay, A. A., Gershikov, I. V. (2013). Identify ways to improve the quality of processing temperature criterion. Izvestiya TulGU. Tehnicheskie nauki, 8, 143–153.
  12. Novikov, F. V., Klenov, O. S. (2014). Raschet i issledovanie parametrov silovoy napryazhennosti protsessov mehanicheskoy obrabotki materialov. Izvestiya Yugo-Zapadnogo gosudarstvennogo universiteta. Tehnika i tehnologii, 1, 45–51.
  13. Sagarda, A. A., Himach, O. V. (1972). Kontaktnaya temperatura i silovye zavisimosti pri rezanii almaznym zernom. Sinteticheskie almazy, 2, 5–9.
  14. Evseev, D. G., Sal'nikov, A. N. (1976). Nekotorye zavisimosti temperatury pri shlifovanii ot rezhimov rezaniya. Issledovaniya v oblasti stankov i instrumentov, 2, 17–22.
  15. Werner, G. (1979). Technologische und Konstruktive Voraussatzungen fur das Tiefschleifen. Werkstattstechnik, 10, 613–620.
  16. Yakimov, A. V., Hanzhin, N. N., Sipaylov, V. A., Rahmatulin, G. G., Potemkin, V. I. (1971). Raschet temperaturnogo polya pri shlifovanii metallov. Stanki i instrument, 8, 27–28.
  17. Starkov, V. K. (2002). Vysokoporistyy abrazivnyy instrument novogo pokoleniya. Vestnik mashinostroeniya, 4, 56–62.
  18. Lishchenko, N. V., Larshin, V. P., Yakimov, A. V. (2012). Opredelenie temperatury preryvistogo shlifovaniya. Pratsi Odeskoho politekhnichnoho universytetu, 2 (39), 80–85.
  19. Yakimov, A. A. (2010). Issledovanie temperatury poverhnosti pri zuboshlifovanii na stanke 5851 (MAAG). Visnyk Kharkivskoho natsionalnoho tekhnichnoho universytetu silskoho hospodarstva imeni Petra Vasylenka, 101, 281–285.
  20. Lavrinenko, V. I., Brovchenko, A. M. (2006). The study of conditions to ensure defect-free machining of magnetically hard alloys with superabrasive wheels. Journal of Superhard Materials, 28 (1), 52–57.
  21. Saravanan, R., Asokan, P., Sachidanandam, M. (2002). A multi-objective genetic algorithm (GA) approach for optimization of surface grinding operations. International Journal of Machine Tools and Manufacture, 42 (12), 1327–1334. doi: https://doi.org/10.1016/s0890-6955(02)00074-3
  22. Polyanskiy, V. I. (2018). Opredelenie maksimal'no vozmozhnoy proizvoditel'nosti lezviynoy obrabotki s uchetom ogranicheniya po temperature rezaniya. Rezanie i instrumenty v tehnologicheskih sistemah, 89 (101), 141–148.
  23. Nоvіkоv, F. V., Nеzhеbоvskiy, V. V. (2011). Process quality assurance process at operations zuboshlifovaniya. Visnyk Kharkivskoho natsionalnoho tekhnichnoho universytetu silskoho hospodarstva imeni Petra Vasylenka, 118, 21–32.
  24. Golgels, Ch., Schlattmeier, H., Klocke, F. (2006). Optimization of the gear profile grinding process utilizing an analogy process. Gear technology, 34–40.
  25. Nishimura, Y., Toshifumi, K., Yuji, A., Yoshikoto, Y., Koichi, M. (2008). Gear grinding processing developed for high-precision gear manufacturing. Mitsubishi Heavy Industries. Technical Review, 45 (3), 33–38.
  26. Zaborowski, T., Ochenduszko, R. (2017). Grinding burns in the technological surface of the gear teeth of the cylindrical gears. Mechanik, 10, 882–884. doi: https://doi.org/10.17814/mechanik.2017.10.135

Downloads

Published

2019-11-15

How to Cite

Nоvikоv F., Polyansky, V., Shkurupiy, V., Novikov, D., Hutorov, A., Ponomarenko, Y., Yermolenko O. О., & Yermolenko O. А. (2019). Determining the conditions for decreasing cutting force and temperature during machining. Eastern-European Journal of Enterprise Technologies, 6(1 (102), 41–50. https://doi.org/10.15587/1729-4061.2019.183882

Issue

Section

Engineering technological systems