Determining the conditions for decreasing cutting force and temperature during machining
DOI:
https://doi.org/10.15587/1729-4061.2019.183882Keywords:
machining quality and rate control, machining, cutting force and temperatureAbstract
The theoretical approach to calculating and controlling the force and temperature parameters of edge cutting and abrasive machining processes taking into account the provision of the minimum possible power consumption of the cutting process is given. The conditions for reducing cutting force and temperature and improving the quality and rate of grinding and edge cutting machining are theoretically determined. They consist mainly in reducing the relative shear angle of the machined material and, accordingly, power consumption by increasing the cutting capacity of the tool. It is analytically found that in grinding, cutting force and temperature are greater than in edge cutting machining due to the intense friction of the grinding wheel bond with the machined material and the presence of negative rake angles of cutting grains. It is shown that cutting temperature during grinding can be reduced using the multipass grinding pattern, as well as patterns of high-velocity creep-feed wheel-face and double-disc grinding. On this basis, the approach to creating technologies of effective high-velocity defect-free edge cutting and abrasive machining of machine parts and carbide cutting tools is developed.
The developed technology of form grinding on the modern HOFLER RAPID 1250 gear grinding machine using a special highly porous form abrasive wheel tapered on both sides received practical application. This wheel has a high cutting capacity in conditions of high-velocity creep-feed grinding. Compared to the conventional method of gear grinding by the generating process, carried out under conditions of multipass grinding, this allowed increasing machining rate up to 5 times. The technology of high-velocity creep-feed external grinding of multipoint carbide cutting tools (milling cutters, reamers) with high-strength metal-bonded diamond wheels using the electrical discharge dressing method is developed. This made it possible to increase the rate by 2–3 times and provide high-quality defect-free machining of carbide toolsReferences
- Stachurski, W., Midera, S., Kruszynski, B. (2012). Determination of Mathematical Formulae for the Cutting Force F C during the Turning of C45 Steel. Mechanics and Mechanical Engineering, 16 (2), 73–79.
- Siziy, Yu. A., Stalinskiy, D. V., Ushakov, A. N. (2009). O mgnovennoy temperature shlifovaniya. Visnyk Natsionalnoho tekhnichnoho universytetu «Kharkivskyi politekhnichnyi instytut», 2, 97–106.
- Lishchenko, N. V., Larshin, V. P. (2011). Model' temperaturnogo tsikla shlifovaniya dlya tehnologicheskoy diagnostiki protsessa. Visnyk Kharkivskoho natsionalnoho tekhnichnoho universytetu silskoho hospodarstva imeni Petra Vasylenka, 118, 185–193.
- Jin, T., Yi, J., Li, P. (2016). Temperature distributions in form grinding of involute gears. The International Journal of Advanced Manufacturing Technology, 88 (9-12), 2609–2620. doi: https://doi.org/10.1007/s00170-016-8971-z
- Yi, J., Jin, T., Deng, Z. (2019). The temperature field study on the three-dimensional surface moving heat source model in involute gear form grinding. The International Journal of Advanced Manufacturing Technology, 103 (5-8), 3097–3108. doi: https://doi.org/10.1007/s00170-019-03752-9
- Patil, R. A., Gombi, S. L. (2018). Experimental study of cutting force on a cutting tool during machining using inverse problem analysis. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 40 (10). doi: https://doi.org/10.1007/s40430-018-1411-2
- Firas M. F. Al Quran, F. M. F. A. Q. (2018). Theoretical Corroboration of the Selection Criteria of the Breaking-in and Shape-Copy Gear Teeth Grinding Methods. International Journal of Mechanical and Production Engineering Research and Development, 8 (1), 389–392. doi: https://doi.org/10.24247/ijmperdfeb201842
- Mohammad Essa Matarneh, M. E. M. (2018). Improvement of Abrasive and Edge Cutting Machining Efficiency through Theoretical Analysis of Physical Conditions. International Journal of Mechanical and Production Engineering Research and Development, 8 (2), 249–262. doi: https://doi.org/10.24247/ijmperdapr201828
- Kito, Y., Katsuma, T., Yanase, Y., Nose, Y. (2015). Latest Technologies for High-Precision, High-Efficiency Gear Grinding Processing. Mitsubishi Heavy Industries Technical Review, 52 (3), 5–8.
- Undewiss, S., Miller, B. (2010). Grinding large module gears. Gear solution, 35–45.
- Novikov, F. V., Andilakhay, A. A., Gershikov, I. V. (2013). Identify ways to improve the quality of processing temperature criterion. Izvestiya TulGU. Tehnicheskie nauki, 8, 143–153.
- Novikov, F. V., Klenov, O. S. (2014). Raschet i issledovanie parametrov silovoy napryazhennosti protsessov mehanicheskoy obrabotki materialov. Izvestiya Yugo-Zapadnogo gosudarstvennogo universiteta. Tehnika i tehnologii, 1, 45–51.
- Sagarda, A. A., Himach, O. V. (1972). Kontaktnaya temperatura i silovye zavisimosti pri rezanii almaznym zernom. Sinteticheskie almazy, 2, 5–9.
- Evseev, D. G., Sal'nikov, A. N. (1976). Nekotorye zavisimosti temperatury pri shlifovanii ot rezhimov rezaniya. Issledovaniya v oblasti stankov i instrumentov, 2, 17–22.
- Werner, G. (1979). Technologische und Konstruktive Voraussatzungen fur das Tiefschleifen. Werkstattstechnik, 10, 613–620.
- Yakimov, A. V., Hanzhin, N. N., Sipaylov, V. A., Rahmatulin, G. G., Potemkin, V. I. (1971). Raschet temperaturnogo polya pri shlifovanii metallov. Stanki i instrument, 8, 27–28.
- Starkov, V. K. (2002). Vysokoporistyy abrazivnyy instrument novogo pokoleniya. Vestnik mashinostroeniya, 4, 56–62.
- Lishchenko, N. V., Larshin, V. P., Yakimov, A. V. (2012). Opredelenie temperatury preryvistogo shlifovaniya. Pratsi Odeskoho politekhnichnoho universytetu, 2 (39), 80–85.
- Yakimov, A. A. (2010). Issledovanie temperatury poverhnosti pri zuboshlifovanii na stanke 5851 (MAAG). Visnyk Kharkivskoho natsionalnoho tekhnichnoho universytetu silskoho hospodarstva imeni Petra Vasylenka, 101, 281–285.
- Lavrinenko, V. I., Brovchenko, A. M. (2006). The study of conditions to ensure defect-free machining of magnetically hard alloys with superabrasive wheels. Journal of Superhard Materials, 28 (1), 52–57.
- Saravanan, R., Asokan, P., Sachidanandam, M. (2002). A multi-objective genetic algorithm (GA) approach for optimization of surface grinding operations. International Journal of Machine Tools and Manufacture, 42 (12), 1327–1334. doi: https://doi.org/10.1016/s0890-6955(02)00074-3
- Polyanskiy, V. I. (2018). Opredelenie maksimal'no vozmozhnoy proizvoditel'nosti lezviynoy obrabotki s uchetom ogranicheniya po temperature rezaniya. Rezanie i instrumenty v tehnologicheskih sistemah, 89 (101), 141–148.
- Nоvіkоv, F. V., Nеzhеbоvskiy, V. V. (2011). Process quality assurance process at operations zuboshlifovaniya. Visnyk Kharkivskoho natsionalnoho tekhnichnoho universytetu silskoho hospodarstva imeni Petra Vasylenka, 118, 21–32.
- Golgels, Ch., Schlattmeier, H., Klocke, F. (2006). Optimization of the gear profile grinding process utilizing an analogy process. Gear technology, 34–40.
- Nishimura, Y., Toshifumi, K., Yuji, A., Yoshikoto, Y., Koichi, M. (2008). Gear grinding processing developed for high-precision gear manufacturing. Mitsubishi Heavy Industries. Technical Review, 45 (3), 33–38.
- Zaborowski, T., Ochenduszko, R. (2017). Grinding burns in the technological surface of the gear teeth of the cylindrical gears. Mechanik, 10, 882–884. doi: https://doi.org/10.17814/mechanik.2017.10.135
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2019 Fedir Nоvikоv, Vladimir Polyansky, Valentin Shkurupiy, Dmytro Novikov, Andrii Hutorov, Yevhen Ponomarenko, Oksana О. Yermolenko, Oleksii А. Yermolenko
This work is licensed under a Creative Commons Attribution 4.0 International License.
The consolidation and conditions for the transfer of copyright (identification of authorship) is carried out in the License Agreement. In particular, the authors reserve the right to the authorship of their manuscript and transfer the first publication of this work to the journal under the terms of the Creative Commons CC BY license. At the same time, they have the right to conclude on their own additional agreements concerning the non-exclusive distribution of the work in the form in which it was published by this journal, but provided that the link to the first publication of the article in this journal is preserved.
A license agreement is a document in which the author warrants that he/she owns all copyright for the work (manuscript, article, etc.).
The authors, signing the License Agreement with TECHNOLOGY CENTER PC, have all rights to the further use of their work, provided that they link to our edition in which the work was published.
According to the terms of the License Agreement, the Publisher TECHNOLOGY CENTER PC does not take away your copyrights and receives permission from the authors to use and dissemination of the publication through the world's scientific resources (own electronic resources, scientometric databases, repositories, libraries, etc.).
In the absence of a signed License Agreement or in the absence of this agreement of identifiers allowing to identify the identity of the author, the editors have no right to work with the manuscript.
It is important to remember that there is another type of agreement between authors and publishers – when copyright is transferred from the authors to the publisher. In this case, the authors lose ownership of their work and may not use it in any way.