Ion implantation as a way to improve the operating durability of fine-size steel tool

Authors

  • Лариса Александровна Васецкая Rubezhnoye Institute of Chemical Technologies of the Volodymyr Dahl East Ukrainian National University Lenina, 31, Rubezhnoye, Luhansk region, Ukraine, 93009, Ukraine

DOI:

https://doi.org/10.15587/1729-4061.2013.18437

Keywords:

ion implantation, titanium, chromium, modified coating, microhardness, wear resistance, operating durability

Abstract

The work is devoted to the improving the operating durability of a fine-size tool. The application of such tool has economic gains for the producer as leads to the decrease of bought tool expenses. Modified coatings of titanium nitride and chromium on the bases of structural steel and structural alloyed steel have been produced by the ion implantation method. The structure and physical properties of these coatings, as well as their use as protective coatings on the fine-size tool have been studied in this article. Due to the correctly chosen regimes (U discharge = 400 ÷ 430 V, I discharge = 0,5 ÷ 0,35 A, U target = 2 ÷ 1,2 kV, I target = 50 ÷ 60 mA, U base = 25 kV, I base = 35 mA, рgas = 3,32·10-2 Pа), a doze of implanted ions (2,0×1016 – 8,03×1017 ion/cm2), materials of the target(Ti and Cr) and the base (ВСт3сп and 40Cr) and as a result of carrying out experimental researches high quality protective coatings have been produced, microhardness increasing 2,5 times and wear resistance increasing 2,5 times. When using the results of work in practice wear resistance of working surfaces of the fine-size tool has been increased 3 - 6 times. The use of ion-plasma processing enables to get steel with modified protective coatings and to increase the operating durability of the fine-size steel tool and small but having key importance machine parts.

Author Biography

Лариса Александровна Васецкая, Rubezhnoye Institute of Chemical Technologies of the Volodymyr Dahl East Ukrainian National University Lenina, 31, Rubezhnoye, Luhansk region, Ukraine, 93009

Candidate of Technical Sciences, Senior Lecturer

Department of General Physics and Technical Mechanics

References

  1. Ионная имплантация в полупроводники и другие материалы [Текст] : cб. статей / [науч. ред. Куранский Е. и др.]. – М.: Мир, 1980. – 332 с.
  2. Модифицирование и легирование поверхности лазерными, ионными и электронными пучками [Текст] / [под ред. Поута Дж. М., Фоти Г., Джекобсона Д. К. – М.: Машиностроение, 1987. – 424 с.
  3. Влияние высоких доз ионов N+ , N+ + Ni+ , Mo+ + W+ на физико-механические свойства TiNi [Текст] / А. Д. Погребняк, С. Н. Братушка, Л. В. Маликов [и др.] // Журнал технической физики. – 2009. – Т. 79, № 5. – С. 65 – 72.
  4. Ионная имплантация и лучевые технологии [Текст] / [под. ред. Дж. С. Вильямса, Дж. М. Поута]. – К.: Наукова думка, 1988. – 360 с.
  5. Белоус, В. А. О влиянии облучения ионами Ar+ на коррозионную стойкость металлов и сплавов [Текст] / В. А. Белоус, Г. И. Носов, Н. А. Азаренков // ФІП ФИП PSE. – 2010. – Т. 8, № 2. – C. 161–168. – Vol. 8, № 2. – P. 161–168.
  6. Сергеева, М. Х. Наноструктурная модификация поверхности [Текст] / М. Х. Сергеева, В. А. Кохановский // Вестник ДГТУ. – 2008. – Т. 8, № 2. – С. 192–195.
  7. D’Heurle, F. M. Note on the origin of intrinsic stresses in films deposited via evaporation and sputtering [Текст] / F. M. D’Heurle, J. M. Harper // Thin Solid films. – 1989. – Т. 171, № 1. – С. 81–92.
  8. Galvanetto, E. XRD and XPS study on reactive plasma sprayed titanium – titanium nitride coating [Текст] / E. Galvanetto, F. P. Galliano, F. Borgioli [et al.] // Thin Solid Films. – 2001. – Т. 384, № 2.- С. 223–229.
  9. Ellwanger, R. C. The deposition and film properties of reactively sputtered titanium nitride [Текст] / R. C. Ellwanger, J. M. Towner // Thin Solid films. – 1988. – Т. 161. – С. 289–304.
  10. Grant, W. A. The modification of surface layers by ion implantation [Текст] / W. A. Grant, J. S. Williams // Sci. Prog. Oxf. – 1976. – Т. 63, № 249. – С. 27–64.
  11. Conrads, H. Plasma generation and plasma sources [Текст] / Н. Conrads, M. Schmidt // Plasma Sources Sci. Technol. – 2000. – № 9. – С. 441–454.
  12. Kanaya, K. Consistent theory of sputtering of solid targets by ion bombardment using power potential Low [Текст] / Kanaya K., Hojou K., Koga K. [et al.]. / J. Appl. Phys. – 1973. – Т. 12, № 9. – С. 1297–1306.
  13. Красильников Л. А. Волочильщик проволоки [Текст] / Л. А. Красильников, С. А. Красильников. – М.: Металлургия, 1977. – 240 с.
  14. Тополянский, П. А. Твердость тонкопленочного покрытия, наносимого методом финишного плазменного упрочнения [Текст] / П. А. Тополянский, С. А. Ермаков, Н. А. Соснин // Технологии ремонта, восстановления и упрочнения деталей машин, механизмов, оборудования, инструмента и технологической оснастки: 7-я междунар. практич. конф.-выставка, 12-15 апр. 2005 г. : тезисы докл. – Санкт-Петербург, 2005. – С. 274–298.
  15. Физика износостойкости поверхности металлов [Текст] : сб. науч. трудов / [науч. ред. Владимиров В. И. и др.] – Л.: ФТИ, 1988. – 230 с.
  16. Kuransky, E. (1980). Ion implantation in semiconductors and other materials. Moscow, USSR: World, 332.
  17. Poate, J. M., Foti, G., & Jacobson, D. C. (1987). The modification and surface alloying of the laser, ion and electron beams. Moscow, USSR: Mechanical Engineering, 424.
  18. Pogrebnyak, A. D. (2009). Effect of high doses of ions N+ , N+ + Ni+ , Mo+ + W+ on the physico -mechanical properties of TiNi. Journal of Applied Physics, 79 (5), 65-72.
  19. Williams, J. S., & Poate, J. М. (1988). Ion implantation and beam technologies. Kiev, USSR: Naukova Dumka, 360.
  20. . Belous, V. А., Nosov, G. I., & Azarenkov, N. A. (2010). The effect of irradiation with Ar + ions on the corrosion resistance of metals and alloys. ФІП ФИП PSE, 8 (2), 161-168.
  21. Sergeeva, M. Н., & Kochanowski, V. A. (2008). Nanostructured surface modification. Herald DSTU, 8 (2), 192-195.
  22. D’Heurle, F. M., & Harper, J. M. (1989). Note on the origin of intrinsic stresses in films deposited via evaporation and sputtering. Thin Solid films, 171 (1), 81–92.
  23. Galvanetto, E. (2001). XRD and XPS study on reactive plasma sprayed titanium – titanium nitride coating. Thin Solid Films, 384 (2), 223–229.
  24. Ellwanger, R. C., & Towner, J. M. (1988). The deposition and film properties of reactively sputtered titanium nitride. Thin Solid films, 161, 289–304.
  25. Grant, W. A., & Williams, J. S. (1976). The modification of surface layers by ion implantation. Sci. Prog. Oxf., 63 (249), 27–64.
  26. Conrads, H., & Schmidt, M. (2000). Plasma generation and plasma sources. Plasma Sources Sci. Technol., 9, 441–454.
  27. Kanaya, K. (1973). Consistent theory of sputtering of solid targets by ion bombardment using power potential Low. J. Appl. Phys., 12 (9), 1297–1306.
  28. Krasilnikov, L. A., & Krasilnikov, S. A. (1977). The wiredrawer of wire. Moscow, USSR: Metallurgy, 240.
  29. Topolyansky, P. A., Ermakov, S. A., & Sosnin, N. A. (2005). The hardness of the thin-film coating applied by plasma hardening finish: 7th Intern. Practical. Konf.-Exhibition on Technology of repair, restoration and strengthening of machine parts, machinery, equipment, tools and tooling, St. Petersburg, 274-298.
  30. Vladimirov, V. I. (1988). Physics wear of metal surfaces. Leningrad, USSR: Physico-Technical Institute, 230.

Published

2013-12-17

How to Cite

Васецкая, Л. А. (2013). Ion implantation as a way to improve the operating durability of fine-size steel tool. Eastern-European Journal of Enterprise Technologies, 6(5(66), 7–11. https://doi.org/10.15587/1729-4061.2013.18437

Issue

Section

Applied physics