Development of an automated hydraulic brake control system for testing aircraft turboshaft gas turbine engines

Authors

DOI:

https://doi.org/10.15587/1729-4061.2019.185539

Keywords:

hydraulic brake automation, loading characteristic, dynamic parameters, regulation law, transient characteristics

Abstract

To absorb the power generated by a free turbine, hydraulic brake systems of various designs are used in ground tests of aircraft turboshaft gas turbine engines. Ground tests of aircraft turboshaft gas turbine engines with the use of such hydraulic brakes can result in emergency modes of automated engine control in the area of operation of a free turbine speed regulator. Mismatch between the hydraulic brake loading characteristics and the loading characteristics of the rotor driven by a free turbine of the engine is the main cause of emergency operation of automated control systems.

The presented experimental loading characteristics of the hydraulic brake and the helicopter rotor show their significant difference in terms of gain. To eliminate this difference, a possibility of modeling dynamic parameters of rotors by simple automation means was considered. To solve this problem, a linear dynamic model and a block diagram of an automated hydraulic brake control system for ground testing of turboshaft gas turbine engines were elaborated. The law of regulation of the hydraulic brake loading was substantiated. A structurally dynamic diagram of the developed automated control system was presented and calculation formulas for determining the regulator parameters were given. Transient characteristics of the hydraulic brake unit without automation means and with the use of an automated loading control system were calculated. The presented calculation results have shown that the use of automation make it possible to fully emulate characteristics of the helicopter rotors

Author Biographies

Petro Kachanov, National Technical University «Kharkiv Polytechnic Institute» Kyrpychova str., 2, Kharkiv, Ukraine, 61002

Doctor of Technical Sciences, Professor, Head of Department

Department of Automation and Control in Technical Systems

Oleksandr Lytviak, National University of Civil Defence of Ukraine Chernyshevska str., 94, Kharkiv, Ukraine, 61023

Кандидат технических наук, доцент

Кафедра автоматических систем безопасности и информационных технологий

Oleksandr Derevyanko, National University of Civil Defence of Ukraine Chernyshevska str., 94, Kharkiv, Ukraine, 61023

PhD, Associate Professor, Head of Department

Department of Automatic Security Systems and Information Technologies

Sergii Komar, Ivan Kozhedub Kharkiv University of Air Force Sumska str., 77/79, Kharkiv, Ukraine, 61023

PhD, Associate Professor, Senior Lecturer

Department of Design and Strength of Aircraft and Engines

References

  1. Popov, G. M., Novikova, Yu. D., Goryachkin, E. S. (2016). Ispol'zovanie kompressora nizkogo davleniya dlya sozdaniya gidrotormoznoy sistemy ispytatel'nogo stenda gazoturbinnyh dvigateley. Materialy dokladov mezhdunar. nauch.-tehn. konf. Samara, 132–133.
  2. Ahmedzyanov, D. A., Yamaliev, R. R., Kishalov, A. E., Suhanov, A. V. (2009). Automation of process of test aviation GTE on the basis of SCADA-system LabView. Vestnik Ufimskogo gosudarstvennogo aviatsionnogo tehnicheskogo universiteta, 13 (2), 61–68.
  3. Hait, L., Husainov, R., Soldatov, V., Golovin, M. (2018). Sistema avtomatizatsii seriynyh stendovyh ispytaniy aviatsionnyh dvigateley. Zhurnal «STA», 4, 76–81.
  4. Sedristiy, V. A., Loznya, S. V., Pustovoy, S. A., Stepanenko, I. I. (2009). Opyt razrabotki i primeneniya intellektual'nyh ispytatel'nyh stendov aviatsionnyh gazoturbinnyh dvigateley pri dovodke tsifrovyh SAU. Vestnik inzhenernoy akademii Ukrainy, 1, 158–164.
  5. Sykes, C., Sagehorn, K. H. United States Pat. No. US7.942.249 B2. Systems and Methods for Controlling the Stability of a Water Brake Dynamometer.
  6. Gruenbacher, E., del Re, L., Kokal, H., Schmidt, M., Paulweber, M. (2008). Adaptive Control of Engine Torque with Input Delays. IFAC Proceedings Volumes, 41 (2), 9479–9484. doi: https://doi.org/10.3182/20080706-5-kr-1001.01602
  7. Passenbrunner, T. E., Sassano, M., Trogmann, H., del Re, L., Paulweber, M., Schmidt, M., Kokal, H. (2011). Inverse torque control of hydrodynamic dynamometers for combustion engine test benches. Proceedings of the 2011 American Control Conference. doi: https://doi.org/10.1109/acc.2011.5991317
  8. Van den Braembussche, R. A., Malys, H. (1998). Dynamic Stability of a Water Brake Dynamometer. Journal of Engineering for Gas Turbines and Power, 120 (1), 89–96. doi: https://doi.org/10.1115/1.2818092
  9. Gimadiev, A. G., Bukin, V. A., Greshchnyakov, P. I., Utkin, A. V. (2016). Eksperimental'noe issledovanie kolebatel'nyh protsessov pri ispytaniyah turbovintovogo dvigatelya na gidrotormoznoy ustanovke. Materialy dokladov mezhdunar. nauch.-tehn. konf. Samara, 20–21.
  10. Torabnia, S., Banazadeh, A. (2014). Development of a Water Brake Dynamometer With Regard to the Modular Product Design Methodology. Volume 1: Applied Mechanics; Automotive Systems; Biomedical Biotechnology Engineering; Computational Mechanics; Design; Digital Manufacturing; Education; Marine and Aerospace Applications. doi: https://doi.org/10.1115/esda2014-20232
  11. Golovashchenko, A. (2004). Os'minog ili o roli tormoza v progresse turbostroeniya. Dvigatel', 4, 16–54.
  12. Inozemtsev, A. A., Nihamkin, M. A. et. al. (2008). Avtomatika i regulirovanie aviatsionnyh dvigateley i energeticheskih ustanovok. Moscow: Mashinostroenie, 200.

Downloads

Published

2019-12-02

How to Cite

Kachanov, P., Lytviak, O., Derevyanko, O., & Komar, S. (2019). Development of an automated hydraulic brake control system for testing aircraft turboshaft gas turbine engines. Eastern-European Journal of Enterprise Technologies, 6(2 (102), 52–57. https://doi.org/10.15587/1729-4061.2019.185539