Contextual search method based on the thesaurus of knowledge domain

Authors

  • Василь Володимирович Литвин National University "Lviv Polytechnic" St. Bandery 12, Lvіv, 79013, Ukraine
  • Ольга Володимирівна Мороз National University "Lviv Polytechnic" Stapan Bandera-Str., 12, Lviv, 79013, Ukraine

DOI:

https://doi.org/10.15587/1729-4061.2013.18700

Keywords:

thesaurus, semantic metrics, intelligent search engine

Abstract

The creation of the intellectual search engine was reviewed based on the domain thesaurus. Text linguistics was taken as the example of domain. The approach to the creation of semantic metrics was suggested based on such a thesaurus. For this aim the weights of importances of the groups relations were introduced between the thesaurus terms (synonyms, correlates, holonyms, meronyms, hyperonyms). The thesaurus was converted into the weighted conceptual graph. Based on Floyd-Warshall algorithm the distances between the terms of weighted conceptual graph were found. Those distances were used during the intellectual search of relevant text documents based on the key words. If some key words are not mentioned in the text document, the search engine looks for the most related term to the searched one. The efficiency of the proposed approach was introduced in comparison to other methods.

Author Biographies

Василь Володимирович Литвин, National University "Lviv Polytechnic" St. Bandery 12, Lvіv, 79013

Doctor of Technical Sciences, docent

Department of Information Systems and Networks

Ольга Володимирівна Мороз, National University "Lviv Polytechnic" Stapan Bandera-Str., 12, Lviv, 79013

graduate student

Department of Applied Linguistics

References

  1. Гладун А.Я. Формирование тезауруса предметной области как средства моделирования информационных потребностей пользователя при поиске в Интернете [Текст] / А.Я.Гладун, Ю.В.Рогушина // Вестник компьютер. и информ. технологий. – 2007. – № 1. – С. 26-33.
  2. Gruber T. A translation approach to portable ontologies [Текст] / T.Gruber // Knowledge Acquisition. – 1993. – № 5 (2). – P. 199–220.
  3. Гаврилова Т.А. Базы знаний интеллектуальных систем [Текст] / Т.А. Гаврилова, В.Ф. Хорошевский. – СПб.: Питер, 2001. – 384 с.
  4. Strube M. WikiRelate! Computing semantic relatedness using Wikipedia. In Proceedings of the 21st National Conference on Artificial Intelligence [Електронний ресурс] / M.Strube, S.Ponzetto. // (AAAI 06). Boston, Mass., July 16-20, 2006. – Режим доступу: http://www.eml-research.de/english/research/nlp/public.
  5. Jarmasz M. Roget's Thesaurus and semantic similarity [Текст] / M.Jarmasz, S.Szpakowicz // In Proceedings of Conference on Recent Advances in Natural Language Processing (RANLP 2003). – Borovets, Bulgaria, September, 2003. – Р. 212-219.
  6. Fellbaum C. WordNet: an electronic lexical database [Текст] / C.Fellbaum. – MIT Press, Cambridge, Massachusetts, 1998. – 423 p.
  7. Wu Z. Verb semantics and lexical selection [Текст] / Z.Wu, M.Palmer // In Proc. of ACL-94, 1994. – Р. 133-138.
  8. Resnik P. Disambiguating noun groupings with respect to WordNet senses [Електронний ресурс] / P.Resnik // In Proceedings of the 3rd Workshop on Very Large Corpora. MIT, June, 1995. – Режим доступу: http://xxx.lanl.gov/abs/cmp-lg/9511006
  9. Resnik P. Semantic similarity in a taxonomy: an information-based measure and its application to problems of ambiguity in natural language [Текст] / P.Resnik // Journal of Artificial Intelligence Research (JAIR), 1999. – Vol. 11. – Р. 95-130.
  10. Lin D. An information-theoretic definition of similarity [Електронний ресурс] / D.Lin // In Proceedings of International Conference on Machine Learning, Madison, Wisconsin, July, 1998. – Режим доступу: http://www.cs.ualberta.ca/~lindek/papers.htm
  11. Смирнов А.В. Онтологии в системах искусственного интеллекта: способы построения и организации [Текст] / А.В. Смирнов, М.П. Пашкин, Н.Г. Шилов, Т.В. Левашова // Новости искусственного интеллекта. – М.: Изд-во РАИИ, 2002. – № 2. – С. 3–9.
  12. Совпель И.В. Система автоматического извлечения знаний из текста и ее приложения [Текст] / И.В. Совпель // Науч.-теорет. журнал “Искуственный интелект”, ІПШІ “Наука і освіта”. – 2004. – Вип. 3 – С. 668–677.
  13. Wu Z. Verb semantics and lexical selection [Текст] / Z.Wu, M.Palmer // In Proc. of ACL-94, 1994. – Р. 133-138.
  14. Никитина С. Е. Тезаурус по теоретической и прикладной лингвистике [Текст] / С.Е.Никитина. – М.: Наука, 1978. – 220 с.
  15. LytvynV. Searching the Relevant Precedents in Dataspaces Based on Adaptive Ontology [Текст] / V.Lytvyn, N.Shakhovska, V.Pasichnyk, D.Dosyn // Computational Problems of Electrical Engineering. – 2012. – V. 2, N. 1. – Lviv. – P. 75-81.
  16. Dosyn D. Planning of Intelligent Diagnostics Systems Based Domain Ontology [Текст] / V.Lytvyn, D.Dosyn // The VIIIth International Conference Perspective Technologies and Methods in MEMS Design. – 2012. – Polyana. – P. 103.
  17. Lytvyn V. Intelligent agent on the basis of adaptive ontologies construction [Електронний ресурс] / V.Lytvyn, D.Dosyn, M.Medykovskyj, N.Shakhovska // Signal Modelling Control. – 2011. – Lodz.
  18. Свами М. Графы, сети и алгоритмы [Текст] / М. Свами, К. Тхуласираман. – М.: Наука, 1984. – 256с.
  19. Montes-y-Gómez M. Comparison of Conceptual Graphs [Електронний ресурс] / M.Montes-y-Gómez, A.Gelbukh, A.López-López // Lecture Notes in Artificial Intelligence. – 2000. – Vol. 1793. – Springer-Verlag: http://ccc.inaoep.mx/~mmontesg/publicaciones/ 2000/ComparisonCG.
  20. Knappe R. Perspectives on Ontology-based Querying [Електронний ресурс] / R.Knappe, H.Bulskov, T.Andreasen // International Journal of Intelligent Systems. – 2004. http://akira.ruc.dk/~knappe/publications/ijis2004.pdf
  21. Lytvyn V. Design of intelligent decision support systems using ontological approach [Текст] / V.Lytvyn // An international quarterly journal on economics in technology, new technologies and modelling processes. – 2013. – Vol. II. – No 1. – P. 31-38.
  22. Gladun, A. J., Rogushina, Y. V. (2007). Formation of the thesaurus as a means of modeling the information needs of the user when searching online. Bulletin of the computer. and Inform. technology, 1, 26-33.
  23. Gruber, T. A (1993). Translation approach to portable ontologies. Knowledge Acquisition, 5(2), 199-220.
  24. Gavrilova, T. A., Horoshevsky, V. F. (2001). Knowledge base of intelligent systems. Peter, 384.
  25. Strube, M., Ponzetto, S. (2006). WikiRelate! Computing semantic relatedness using Wikipedia. In Proceedings of the 21st National Conference on Artificial Intelligence,(AAAI 06). Boston, Mass. http://www.eml-research.de/english/research/nlp/public
  26. Jarmasz, M., Szpakowicz, S. (2003). Roget's Thesaurus and semantic similarity. In Proceedings of Conference on Recent Advances in Natural Language Processing. Borovets, Bulgaria, 212-219.
  27. Fellbaum, C. (1998). WordNet: an electronic lexical database. MIT Press, Cambridge, Massachusetts, 423.
  28. Wu, Z., Palmer, M. (1994). Verb semantics and lexical selection. In Proc. of ACL- 94, 133-138.
  29. Resnik, P. (1995). Disambiguating noun groupings with respect to WordNet. In Proceedings of the 3rd Workshop on Very Large Corpora. http://xxx.lanl.gov/abs/cmp-lg/9511006
  30. Resnik, P. (1999). Semantic similarity in a taxonomy: an information-based measure and its application to problems of ambiguity in natural language. Journal of Artificial Intelligence Research (JAIR), 11, 95-130.
  31. Lin, D. (1998). An information-theoretic definition of similarity. In Proceedings of International Conference on Machine Learning, Madison, Wisconsin. http://www.cs.ualberta.ca/ ~ lindek / papers.htm
  32. Smirnov, A. V., Pashkin, M. P., Shilov, N. G., Levashova, T.V. (2002). Ontology in artificial intelligence systems: methods of construction and organization. News of artificial intelligence, 2, 3-9.
  33. Sovpel, I.V. (2004). The automatic extraction of knowledge from text and its applications. Scientific-theor. journal Artificial Intelligence, 3, 668-677.
  34. Wu, Z., Palmer, M. (1994). Verb semantics and lexical selection. In Proc. of ACL- 94, 133-138.
  35. Nikitin, S.E. (1978). Thesaurus on Theoretical and Applied Linguistics, 220.
  36. Lytvyn, V., Shakhovska, N., Pasichnyk, V., Dosyn, D. (2012). Searching the Relevant Precedents in Dataspaces Based on Adaptive Ontology. Computational Problems of Electrical Engineering, 2(1), 75-81.
  37. Dosyn D., Lytvyn V. (2012) Planning of Intelligent Diagnostics Systems Based Domain Ontology. The VIIIth International Conference Perspective Technologies and Methods in MEMS Design, Polyana, Ukraine, 103.
  38. Lytvyn, V., Dosyn, D., Medykovskyj, M., Shakhovska, N. (2011). Intelligent agent on the basis of adaptive ontologies construction. Signal Modelling Control, Lodz.
  39. Swami, M., Thulasiraman, K. (1984). Graphs, Networks and Algorithms, 256.
  40. Montes-y-Gómez, M., Gelbukh, A., López-López, A. (2000). Comparison of Conceptual Graphs. Lecture Notes in Artificial Intelligence, 1793. http://ccc.inaoep.mx/ ~ mmontesg / publicaciones / 2000/ComparisonCG.
  41. Knappe, R., Bulskov, H., Andreasen, T. (2004). Perspectives on Ontology-based Querying. International Journal of Intelligent Systems. http://akira.ruc.dk/ ~ knappe/publications/ijis2004.pdf
  42. Lytvyn, V. (2013). Design of intelligent decision support systems using ontological approach. An international quarterly journal on economics in technology, new technologies and modelling processes, 2(1), 31-38.

Published

2013-12-13

How to Cite

Литвин, В. В., & Мороз, О. В. (2013). Contextual search method based on the thesaurus of knowledge domain. Eastern-European Journal of Enterprise Technologies, 6(2(66), 22–27. https://doi.org/10.15587/1729-4061.2013.18700