The information technology of construction neurosimulator of the assessment of systems of safety

Authors

  • Игорь Анатолиевич Пилькевич Zhytomyr National Agroecological University Blvd Stary, 7, Zhytomyr, Ukraine, 10008, Ukraine
  • Надежда Николаевна Лобанчикова Zhitomir State Technological University str. Chernyakhovskogo, 103, Zhytomyr, Ukraine, 10005, Ukraine
  • Владимир Иванович Котков Zhytomyr National Agroecological University Blvd Stary, 7, Zhytomyr, Ukraine, 10008, Ukraine
  • Татьяна Николаевна Коткова Zhytomyr National Agroecological University Blvd Stary, 7, Zhytomyr, Ukraine, 10008, Ukraine

DOI:

https://doi.org/10.15587/1729-4061.2013.18704

Keywords:

prediction, security, information, neuron, network, neurosimulator, classification, algorithm, training

Abstract

The use of modern information technologies can facilitate information processing and automate decision-making processes of experts in information security. The aim of the research is to develop the information technology of predicting the reliability of information security system activation for the automation of information security experts’ work.

The object of the study is the process of constructing intelligent systems of analysis and decision support. The subjects of the study are models, methods and tools for building the intelligent systems of analysis and decision support in order to predict the reliability of security systems activation, automation of information processing by experts.

The information technology of development and implementation of the neurosimulator for predicting the reliability assessment of security systems and automation of the information security expert’s work in order to minimize the time for data processing and decision-making is described in the paper.

The information technology can be used to predict a wide range of problems. The advantage of the proposed technology is the use of several variants of the activation function and network training methods, which allows to obtain a set of data for a thorough analysis and increase the objectivity of decision-making.

Author Biographies

Игорь Анатолиевич Пилькевич, Zhytomyr National Agroecological University Blvd Stary, 7, Zhytomyr, Ukraine, 10008

Doctor of Technical Sciences, Professor, the managing chair

Chair of monitoring of surrounding environment

Надежда Николаевна Лобанчикова, Zhitomir State Technological University str. Chernyakhovskogo, 103, Zhytomyr, Ukraine, 10005

Candidate of Technical Sciences, The senior lecturer

The department of automation and control in technical systems

Владимир Иванович Котков, Zhytomyr National Agroecological University Blvd Stary, 7, Zhytomyr, Ukraine, 10008

Candidate of Technical Sciences, the senior lecturer, the senior lecturer of chair

Chair of monitoring of surrounding environment

Татьяна Николаевна Коткова, Zhytomyr National Agroecological University Blvd Stary, 7, Zhytomyr, Ukraine, 10008

Candidate of Agricultural Sciences, The senior lecturer, the senior lecturer of chair

Chair of general ecology

References

  1. Chen, P. P. The Entity-Relationship Model: Toward a Unified View of Data / P. P. Chen // ACM Trans. On Database Syst. – 1976. – V.1, №1. – P. 9–36.
  2. Codd, E. F. A relational model of data large shared data banks / E. F. Codd // Comm. ACM. – 1970. – V.13, №6. – P. 377–387.
  3. Глушков, В. М. Строение локально бикомпактных групп и пятая проблема Гильберта [Текст] / В. М. Глушков // Успехи математических наук. – 1957. №12, 2(74). – С. 3–41.
  4. Палагин, А. В. Онтологические методы и средства обработки предметных знаний : монография [Текст] / А. В. Палагин, С. Л. Крывый, Н. Г. Петренко. – Луганск : изд-во ВНУ им. В. Даля, 2012. – 323 с.
  5. Корченко, О. Г. Системи захисту інформації : монографія [Текст] / О. Г. Корченко. – К. : НАУ, 2004. – 264 с.
  6. Субботін, С. О. Подання й обробка знань у системах штучного інтелекту та підтримки прийняття рішень : навч. посібник [Текст] / С. О. Субботин. – Запоріжжя : ЗНТУ, 2008. – 341 с.
  7. Гладун, В. П. Инструментальный комплекс поддержки принятия решений на основе сетевой модели предметной области : зб. допов. наук.-практ. конф. з міжнародною участю „Системи підтримки прийняття рішень. Теорія і практика” [Текст] / В. П. Гладун, В. Ю. Величко. – К. : ІПММС НАНУ, 2012. – С. 126–128.
  8. Оссовский, С. Нейронные сети для обработки информации [Текст] / С. Оссовский; пер. с польск. И. Д. Рудинского. – М. : Финансы и статистика, 2002. – 344 с.
  9. Грибунин, В. Г. Комплексная система зашиты информации на предприятии : учеб. пособие для студ. высш. учеб. заведений [Текст] / В. Г. Грибунин, В. В. Чудовский. – М. : Изд. центр „Академия”, 2009. – 416 с.
  10. Рутковская, Д. Нейронные сети, генетические алгоритмы и нечеткие системы [Текст] / Д. Рутковская, М. Пилинский, Л. Рутковский; пер. с польск. И. Д. Рудинского. – М. : Горячая линия–Телеком, 2007. – 452 с.
  11. Chen, P. P. (1976). The Entity-Relationship Model: Toward a Unified View of Data. ACM Trans. On Database Syst., V.1, №1, 9–36.
  12. Codd, E. F. (1970). A relational model of data large shared data banks. Comm. ACM, V.13, №6, 377–387.
  13. Glushkov, V. M. (1957). The structure of locally bicompact groups and fifth Hilbert's problem. Uspekhi matematicheskikh nauk, 12(2(74)), 3–41.
  14. Palagin, A. V., Kryvyi, S. L., Petrenko, N. G. (2012). Ontological methods and means of processing of subject knowledge: monograph, 323.
  15. Korchenko, O. G. (2004). Systems of priv: monograph, 264.
  16. Subbotin, S. O. (2008). Knowledge presentation and processing in systems of artificial intelligence and decision support: textbook. manual, 341.
  17. Gladun, V. P.,Velichko, V. Yu. (2012). Instrumental complex decision support based on the network model of the subject area. A decision support system. Theory and practice, 126–128.
  18. Ossovskii, S. (2002). Neural networks for information processing. Finance and statistics, 344.
  19. Gribunin, V. G., Chudovsky, V. V. (2009). Complex system of priv on an enterprise: train aid for the students of higher educational establishments, 416.
  20. Rutkovskaia, D., Pilinskii, M., Rutkovskii, L. (2007). Neural networks, genetic algorithms and fuzzy systems. Hot line-Telecom, 452.

Published

2013-12-13

How to Cite

Пилькевич, И. А., Лобанчикова, Н. Н., Котков, В. И., & Коткова, Т. Н. (2013). The information technology of construction neurosimulator of the assessment of systems of safety. Eastern-European Journal of Enterprise Technologies, 6(2(66), 16–21. https://doi.org/10.15587/1729-4061.2013.18704