Multiprocessor technologies of design for tasks of Monte – Karlo

Authors

  • Геннадий Григорьевич Швачич National metallurgical academy of Ukraine. Gagarina 4, Dnipropetrovs’k, Ukraine, 49005, Ukraine

DOI:

https://doi.org/10.15587/1729-4061.2013.18728

Keywords:

cluster computing, parallel computing algorithms, Monte-Carlo method, local optimization

Abstract

The process of mathematical modeling of applied Monte-Carlo problems based on the use of multiprocessor computation system found further development in the paper.

Operating experience of the first parallel systems has shown that their efficiency requires radical change of the structure of numerical methods. In this connection, the corresponding distributed algorithms were developed, the features of modeling applied problems based on multi-processor systems were identified and shown.

Application of the developed approach provides a new way to consider the idea of computation parallelization and the use of cluster computation technologies. A modified algorithm for parallel computation using the Monte-Carlo method is proposed in the paper.

Here, each computer has its own random number generator.

In this case, the intermediate computations are carried out independently on different, individual cluster blades - “computers”, and the results are processed at any individual master-blade - “analyzer”.

This allows to get rid of the indispensable presence of routercommunicator between the random number generator and “computer”. Obviously, this solution allows speeding up the computational process.

The computational schemes that enhance the productivity and performance are given. The effectiveness of the proposed approach is illustrated by a comparative analysis of solution of some class of problems

Author Biography

Геннадий Григорьевич Швачич, National metallurgical academy of Ukraine. Gagarina 4, Dnipropetrovs’k, Ukraine, 49005

Head of department of applied mathematics and computer technique

References

  1. Михайлов, Г. А. Численное статистическое моделирование. Методы Монте - Карло [Текст] / Г. А. Михайлов, А. В. Войтишек. – М.: Академия, 2006. – 368 с.
  2. Михайлов, Г. А. Оптимизация весовых методов Монте - Карло по вспомогательным переменным [Текст] / Г. А. Михайлов, И. Н. Медведев // Сиб. матем. журн. – 2004. – № 45. – С. 399 – 409.
  3. Єрмаков, С. М. Метод Монте - Карло и смежные вопросы / С. М. Ермаков. – М.: Наука, 1971. – 471 с.
  4. Соболь И. М. Метод Монте - Карло / И. М. Соболь. – М.: Наука, 1968. – 64 с.
  5. Браун, Дж. Методы Монте - Карло [Текст] / Дж. Браун // Современная математика для инженеров; под ред. Э. Ф. Беккенбаха. – М.: Изд-во ин. лит., 1958. – 500 с.
  6. Коздоба, Л. А. Вычислительная теплофизика [Текст] / Л. А. Коздоба. – К.: Наук. думка, 1992. – 224 с.
  7. Швачич, Г. Г. Математическое моделирование одного класса задач металлургической теплофизики на основе многопроцессорных параллельных вычислительных систем [Текст] / Г. Г. Швачич // Математичне моделювання. – 2008. – № 1 (18). – С. 60 – 65.
  8. Швачич, Г. Г. К вопросу конструирования параллельных вычислений при моделировании задач идентификации параметров окружающей среды [Текст] / Г. Г. Швачич // Математичне моделювання. – 2006. – № 2 (14). –
  9. С. 23 – 34.
  10. Швачич, Г. Г. ППП исследования решений некоторого класса задач нестационарной теплопроводности [Текст]/ Г. Г. Швачич, А. А. Шмукин, Д. В. Протопопов // Металлургическая теплотехника: Сб. науч. трудов НМетАУ в 2-х кн. – Кн. 2. – Днепропетровск: Пороги, 2005. – С. 448 – 453.
  11. Башков, Є. О. Високопродуктивна багатопроцесорна система на базі персонального обчислювального кластера [Текст] / Є. О. Башков, В. П. Іващенко, Г. Г. Швачич // Наук. пр. Донецького національного технічного університету. Серія “Проблеми моделювання та автоматизації проектування”. – Вип. 9 (179). – Донецьк : ДонНТУ, 2011. – С. 312 – 324.
  12. Mikhayjlov, G. A. & Vojtishek, A. V. (2006). Numerical statistical modeling. Monte Carlo methods. Moscow: Akadimiya, 368.
  13. Mikhayjlov, G. A. & Medvedev, I. N. (2004). Optimization of gravimetric Monte Carlo methods to auxiliary variables. Sib. mathem. Journal, 45, 399 – 409.
  14. Ermakov, S. M. (1971). Monte Carlo method and related matters. Moscow: Science, 471.
  15. Sobol’, I. M. (1968). Monte Carlo Method. Moscow: Science. 64.
  16. Braun, Dj. (1958). Monte Carlo methods. Moscow: Izd.-vo in.lit., 500.
  17. Kozdoba, L. (1992). Computing thermophysics. Kyiv: Scientific conception, 224.
  18. Shvachych, G. G. (2008). Mathematical simulation of one-class problems in metallurgical thermophysics on the basis of the multiprocessor parallel computing systems. The Mathematical design, 1(18), 60-65.
  19. Shvachych, G. G. (2006). To the question of constructing of parallel calculations at the design of tasks of authentication of parameters of environment. The Mathematical design, 2(14), 23 – 34.
  20. Shvachych, G. G., Shmukin, A. A. & Protopopov D. V. (2005). Paskages of solving some problems in the field of non-stationary heat conductivity. Metallurgical of thermotechnics: Proceedings of NMetAU, 448 – 453.
  21. Bashkov, E. O., Ivashchenko, V. P. & Shvachych, G. G. (2011). High- productive multiprocessor system on the basis of the personal computing cluster. Procedings of the National technical university of Donetsk. – Ser. “Problem of simulating and computer-aided design, 9(179), 312 – 324.

Published

2013-12-16

How to Cite

Швачич, Г. Г. (2013). Multiprocessor technologies of design for tasks of Monte – Karlo. Eastern-European Journal of Enterprise Technologies, 6(4(66), 17–20. https://doi.org/10.15587/1729-4061.2013.18728

Issue

Section

Mathematics and Cybernetics - applied aspects