The influence of inhomogeneous on the cantilever beam stiffness

Authors

  • Александр Дмитриевич Шамровский Zaporizhzhya State Engineering Academy Lenin Av. 226, Zaporizhzhya, Ukraine, 69006, Ukraine
  • Дмитрий Николаевич Колесник Zaporizhzhya State Engineering Academy Lenin Av. 226, Zaporizhzhya, Ukraine, 69006, Ukraine
  • Елена Николаевна Михайлуца Zaporizhzhya State Engineering Academy Lenin Av. 226, Zaporizhzhya, Ukraine, 69006, Ukraine

DOI:

https://doi.org/10.15587/1729-4061.2013.18729

Keywords:

cantilever beam, inhomogeneities, large displacement, stiffness, discrete model, lattice model

Abstract

It is proposed in the paper to conduct a computational experiment on  the determination of the influence of inhomogeneities on the canti­lever beam stiffness using a discrete model of the continuous medium. This approach allows to consider the materials with arbitrary discrete inhomogeneity. Inhomogeneities are represented by various variants of the composition of two materials with different elastic modulus and Poisson’s ratios. The study of the influence of these inhomogeneities is supposed to conduct by studying the geometrically nonlinear defor­mation of the cantilever beam, subjected to the uniformly distributed load. Calculation of the discrete model is made by the method of successive displacements. Based on the obtained calculation results, it is proposed to construct the diagrams of the dependence of di­mensionless movement of the end of the cantilever beam along the axes of abscissas and ordinates on the dimensionless load for different schemes of composition of two materials. The obtained dependences allow to draw conclusions on the changes of the stiffness characteris­tics of the beam depending on the scheme of materials composition. The obtained results completely correspond to the expected results, allowing to draw conclusions on the direct influence on the stiffness of the cantilever beam by the inclusion of material with much higher stiffness than the main. Herewith, the form of the composition of two materials also greatly affects the stiffness of the console as a whole.

Author Biographies

Александр Дмитриевич Шамровский, Zaporizhzhya State Engineering Academy Lenin Av. 226, Zaporizhzhya, Ukraine, 69006

Doctor of Technical Sciences, Professor

Department of Automated Systems Software

Дмитрий Николаевич Колесник, Zaporizhzhya State Engineering Academy Lenin Av. 226, Zaporizhzhya, Ukraine, 69006

Assistant

Department of Higher and Applied Mathematics

Елена Николаевна Михайлуца, Zaporizhzhya State Engineering Academy Lenin Av. 226, Zaporizhzhya, Ukraine, 69006

Candidate of Technical Sciences, assistant professor

Department of Automated Systems Software

References

  1. Chawla, K.K. Composite Materials: Science and Engineering [Текст] / K.K. Chawla. — 3rd edition. — Springer, 2012. — 450 p. — ISBN-13: 978-0387743646.
  2. Vasiliev, V.V. Advanced mechanics of composite materials and structural elements [Текст] / V.V. Vasiliev, E. Morozov. — 3rd edition. — Elsevier, 2013. — 832 p. — ISBN-13: 978-0080982311.
  3. Carlsson, L.A. Structural and failure mechanics of sandwich composites [Текст] / L.A. Carlsson, G.A. Kardomateas. — Springer, 2011. — 300 p. — ISBN-13: 978-1402032240.
  4. Болотин, В.В. Механика многослойных конструкций [Текст] / В.В. Болотин, Ю.Н. Новичков. — М.: Машиностроение, 1980. — 375 с.
  5. Bilgili, E. Influence of material non homogeneity on the shearing response of a neo hookean slab [Текст] / E. Bilgili, B. Bernstein, H. Arastoopour // Rubber chemistry and technology. — 2002. — Vol. 75, No. 2. — Pp. 347-363.
  6. Paulino, G.H. Isoparametric graded finite elements for nonhomogeneous isotropic and orthotropic materials [Текст] / G.H. Paulino, Jeong-Ho Kim // Journal of applied mechanics. — ASME Journals, 2002. — Vol. 69, No. 4. — Pp. 502-514. — DOI: 10.1115/1.1467094.
  7. Bayar, S. General plane elasticity solution for non-homogeneous materials [Текст] / S. Bayar, F. Delale // Meccanica. — Springer Netherlands, 2012. — Vol. 47, No. 7. — Pp 1737-1759. — DOI: 10.1007/s11012-012-9551-4.
  8. Косинский, В.В. Получение композиционных материалов с наперед заданными свойствами способом гидростатической пропитки с нагревом [Текст] / В.В. Косинский // Нові матеріали і технології в металургії та машинобудуванні. — 2011. — №2. — C. 86-93.
  9. Шамровский, А.Д. Учет геометрической нелинейности в дискретной модели сплошной среды [Текст] / А.Д. Шамровский, Д.Н. Колесник // Методи розв’язання прикладних задач механіки деформівного твердого тіла / Дніпропетровський національний університет. — Дніпропетровськ: Ліра, 2012. — Вип. 13. — С. 420–427.
  10. Вольмир, А.С. Гибкие пластинки и оболочки [Текст] / А.С. Вольмир. — М.: Гос. изд. тех.-теор. лит., 1956. — 420 с.
  11. Тимошенко, С.П. Пластинки и оболочки [Текст] / С.П. Тимошенко, С. Войновский-Кригер; перев. с англ. В.И. Контовта; ред. Г.С. Шапиро. — 2-е изд., стереотипное. — М.: Наука Гл. ред. физ.-мат. лит., 1966. — 636 с.
  12. Chawla, K.K. (2012). Composite Materials: Science and Engineering (3rd ed.). Springer.
  13. Vasiliev, V.V., Morozov, E. (2013). Advanced mechanics of composite materials and structural elements (3rd ed.). Elsevier.
  14. Carlsson, L.A., Kardomateas, G.A. (2011). Structural and failure mechanics of sandwich composites. Springer.
  15. Bolotin, V.V., Novichkov, J.N. (1980). Mechanics of sandwich structures. Moscow: Mashinostroyeniye.
  16. Bilgili, E., Bernstein, B., Arastoopour, H. (2002). Influence of material non homogeneity on the shearing response of a neo hookean slab. Rubber chemistry and technology, 75, 2, 347-363.
  17. Paulino, G.H., Jeong-Ho Kim (2002). Isoparametric graded finite elements for nonhomogeneous isotropic and orthotropic materials. Journal of Applied Mechanics, 69, 4, 502-514. doi: 10.1115/1.1467094.
  18. Bayar, S, Delale, F. (2012). General plane elasticity solution for non-homogeneous materials. Meccanica, 47, 7, 1737-1759. doi: 10.1007/s11012-012-9551-4.
  19. Kosinskiy, V.V. (2011). Polucheniye kompozitsionnykh materialov s napered zadannymi svoystvami sposobom gidrostaticheskoy propitki s nagrevom. Noví materíali í tekhnologíí̈ v metalurgíí̈ ta mashinobuduvanní, 2, 86-93.
  20. Shamrovsky, A., Kolesnyk, D. (2012). Geometric nonlinearity consideration in the continuous medium discrete model. Metody rozv'yazuvannya prykladnykh zadach mekhaniky deformivnoho tverdoho tila, 13, 420–427.
  21. Volmir, A.S. (1956). Flexible plates and shells. Moscow: Gosudarstvennoye izdatel'stvo tekhniko-teoreticheskoy literatury.
  22. Timoshenko, S.P., Voynovskiy-Krieger, S. (1966). Plates and Shells (2nd ed.). Moscow: Nauka.

Published

2013-12-12

How to Cite

Шамровский, А. Д., Колесник, Д. Н., & Михайлуца, Е. Н. (2013). The influence of inhomogeneous on the cantilever beam stiffness. Eastern-European Journal of Enterprise Technologies, 6(7(66), 4–7. https://doi.org/10.15587/1729-4061.2013.18729

Issue

Section

Applied mechanics