Computer algebra systems in the elementary number theory

Authors

  • Леонід Петрович Бедратюк Khmelnitsk National University Institutska st, 11, Khmelnitskiy, Ukraine, 29016, Ukraine
  • Ганна Іванівна Бедратюк Khmelnitsk National University Institutska st, 11, Khmelnitskiy, Ukraine, 29016, Ukraine

DOI:

https://doi.org/10.15587/1729-4061.2013.18892

Keywords:

number theory, Maple, algorithms, divisibility, congruence, Legendre symbol, primitive roots

Abstract

Recently we have seen the  active penetration of computer algebra systems to  the educational process because it allows to form an  innovative learning technologies. Almost every branch of mathematics the  Maple developed the separate specialized package commands. However, currently these technologies, despite its effectiveness and visibility, for various reasons, are still not common in the classroom. The purpose of this article is to review basic information about the capabilities of computer algebra to solve some common problems of the elementary number theory, and which can be used to solve educational problems. The paper describes the package description commands NumberTheory of the computer algebra system Maple. The methods of solving some common problems in the number theory in Maple. Using discussed the team package Maple a teacher can illustrate the problem solving in the classroom for the subject of the  elementary number theory.

Author Biographies

Леонід Петрович Бедратюк, Khmelnitsk National University Institutska st, 11, Khmelnitskiy, Ukraine, 29016

Department of Software Engineering

Ганна Іванівна Бедратюк, Khmelnitsk National University Institutska st, 11, Khmelnitskiy, Ukraine, 29016

Department of Software Engineering

References

  1. Черняк, А. А. Синтез классической и компьютерной математики в обучении [Текст] /A. A. Черняк, Ю. А. Доманова, Т. Н. Ранько // Информатизация образования. –2005. – № 1. –С. 36–45.
  2. Samková, L. Calculus of one and more variables with Maple [Текст] / L. Samková // International Journal of Mathematical Education in Science and Technology. –2012. – V. 43. –№2.–P.230-244
  3. Adym, E. The use of computers in mathematics education: A paradigm shift from “computer assisted instruction” towards “student rogramming” [Текст] /E.Adym // The Turkish Online Journal of Educational Technology. –2005. – 4(2).– P.27–34.
  4. Дьяконов, В. П. Maple 9.5/10 в математике, физике и образовании [Текст] / В. П. Дьяконов. — М.: С.Пресс, 2000. — 453 с.
  5. Васильев, А. Н. Maple 8. Самоучитель Текст] / А. Н. Васильєв. —М.: Диалектика, 2003.— 352 с.
  6. Виноградов, И. М. Основы терии чисел [Текст] / И. М. Виноградов. —М.:Наука, 1981. –180 с.
  7. Song, Y. Number Theory for Computing, Springer [Текст] / Y. Song. –Springer, –2002. – 453 p.
  8. Бедратюк, Г. Системи комп’ютерної алгебри в математичній логіці [Текст] / Г. І. Бедратюк // Східно-Європейський журнал передових технологій. – 2012. – T. 6, N 4(60). -С. 43-46.
  9. Бедратюк, Л. П. Системи комп’ютерної алгебри в теорії графів [Текст] / Л.П. Бедратюк, Г.І. Бедратюк // Східно-Європейський журнал передових технологій. – 2012. – T. 6, N 4(60). - С. 43-46.
  10. Zhe-Xian Wan, A shorter proof for an explicit formula for discrete logarithms in finite fields [Текст] / W. Zhe-Xian // Discrete Mathematics. —2008. —Vol.308( 21). — P. 4914–4915.
  11. Cherniak, A. A., Domanova, Yu. A., Ranko, T. N. (2005). Synthesis of classical and computer mathematics in learning [Sintez klassicheskoy i komputernoi matematiki v obuchenii], Informatizacia obrazovania, Informatization of Education, 1, 36-45.
  12. Samková, L. (2012). Calculus of one and more variables with Maple, International Journal of Mathematical Education in Science and Technology, 43(2),230-244.
  13. Adym, E. (2005).The use of computers in mathematics education: A paradigm shift from “computer assisted instruction” towards “student rogramming”, The Turkish Online Journal of Educational Technology, 4(2), 27–34.
  14. Diakonov, V. P. (2000). Maple 9.5/10 in mathematics, physics and education [Maple 9.5/10 v matematike, fizike I obrazovanii]. 453.
  15. Vasiliev, A. N. (2003). Maple 8. Self-teacher [Maple 8. Samouchitel], 352.
  16. Vinogradov, I. M. (1981). Elements of Number Theory [Osnovy teorii chisel], 180.
  17. Song, Y. (2002). Number Theory for Computing, Springer, 453.
  18. Bedratyuk, A. I. (2012). Computer algebra system in the mathematic logic [Systemy kompyuternoi algebry v matemetychniy logici], Eastern-European Journal of Enterprise Technologies, 3(4(57)), 32-35.
  19. Bedratyuk A. I., Bedratyuk, L. P. (2012). Computer algebra system in the graph theory [Systemy kompyuternoi algebry v teorii grafiv], Eastern-European Journal of Enterprise Technologies, 6(4(60)), 43-46.
  20. Zhe-Xian, W. (2008) A shorter proof for an explicit formula for discrete logarithms in finite fields, Discrete Mathematics, 308(21), 4914–4915.

Published

2013-12-16

How to Cite

Бедратюк, Л. П., & Бедратюк, Г. І. (2013). Computer algebra systems in the elementary number theory. Eastern-European Journal of Enterprise Technologies, 6(4(66), 10–13. https://doi.org/10.15587/1729-4061.2013.18892

Issue

Section

Mathematics and Cybernetics - applied aspects