Computer algebra systems in the elementary number theory
DOI:
https://doi.org/10.15587/1729-4061.2013.18892Keywords:
number theory, Maple, algorithms, divisibility, congruence, Legendre symbol, primitive rootsAbstract
Recently we have seen the active penetration of computer algebra systems to the educational process because it allows to form an innovative learning technologies. Almost every branch of mathematics the Maple developed the separate specialized package commands. However, currently these technologies, despite its effectiveness and visibility, for various reasons, are still not common in the classroom. The purpose of this article is to review basic information about the capabilities of computer algebra to solve some common problems of the elementary number theory, and which can be used to solve educational problems. The paper describes the package description commands NumberTheory of the computer algebra system Maple. The methods of solving some common problems in the number theory in Maple. Using discussed the team package Maple a teacher can illustrate the problem solving in the classroom for the subject of the elementary number theory.
References
- Черняк, А. А. Синтез классической и компьютерной математики в обучении [Текст] /A. A. Черняк, Ю. А. Доманова, Т. Н. Ранько // Информатизация образования. –2005. – № 1. –С. 36–45.
- Samková, L. Calculus of one and more variables with Maple [Текст] / L. Samková // International Journal of Mathematical Education in Science and Technology. –2012. – V. 43. –№2.–P.230-244
- Adym, E. The use of computers in mathematics education: A paradigm shift from “computer assisted instruction” towards “student rogramming” [Текст] /E.Adym // The Turkish Online Journal of Educational Technology. –2005. – 4(2).– P.27–34.
- Дьяконов, В. П. Maple 9.5/10 в математике, физике и образовании [Текст] / В. П. Дьяконов. — М.: С.Пресс, 2000. — 453 с.
- Васильев, А. Н. Maple 8. Самоучитель Текст] / А. Н. Васильєв. —М.: Диалектика, 2003.— 352 с.
- Виноградов, И. М. Основы терии чисел [Текст] / И. М. Виноградов. —М.:Наука, 1981. –180 с.
- Song, Y. Number Theory for Computing, Springer [Текст] / Y. Song. –Springer, –2002. – 453 p.
- Бедратюк, Г. Системи комп’ютерної алгебри в математичній логіці [Текст] / Г. І. Бедратюк // Східно-Європейський журнал передових технологій. – 2012. – T. 6, N 4(60). -С. 43-46.
- Бедратюк, Л. П. Системи комп’ютерної алгебри в теорії графів [Текст] / Л.П. Бедратюк, Г.І. Бедратюк // Східно-Європейський журнал передових технологій. – 2012. – T. 6, N 4(60). - С. 43-46.
- Zhe-Xian Wan, A shorter proof for an explicit formula for discrete logarithms in finite fields [Текст] / W. Zhe-Xian // Discrete Mathematics. —2008. —Vol.308( 21). — P. 4914–4915.
- Cherniak, A. A., Domanova, Yu. A., Ranko, T. N. (2005). Synthesis of classical and computer mathematics in learning [Sintez klassicheskoy i komputernoi matematiki v obuchenii], Informatizacia obrazovania, Informatization of Education, 1, 36-45.
- Samková, L. (2012). Calculus of one and more variables with Maple, International Journal of Mathematical Education in Science and Technology, 43(2),230-244.
- Adym, E. (2005).The use of computers in mathematics education: A paradigm shift from “computer assisted instruction” towards “student rogramming”, The Turkish Online Journal of Educational Technology, 4(2), 27–34.
- Diakonov, V. P. (2000). Maple 9.5/10 in mathematics, physics and education [Maple 9.5/10 v matematike, fizike I obrazovanii]. 453.
- Vasiliev, A. N. (2003). Maple 8. Self-teacher [Maple 8. Samouchitel], 352.
- Vinogradov, I. M. (1981). Elements of Number Theory [Osnovy teorii chisel], 180.
- Song, Y. (2002). Number Theory for Computing, Springer, 453.
- Bedratyuk, A. I. (2012). Computer algebra system in the mathematic logic [Systemy kompyuternoi algebry v matemetychniy logici], Eastern-European Journal of Enterprise Technologies, 3(4(57)), 32-35.
- Bedratyuk A. I., Bedratyuk, L. P. (2012). Computer algebra system in the graph theory [Systemy kompyuternoi algebry v teorii grafiv], Eastern-European Journal of Enterprise Technologies, 6(4(60)), 43-46.
- Zhe-Xian, W. (2008) A shorter proof for an explicit formula for discrete logarithms in finite fields, Discrete Mathematics, 308(21), 4914–4915.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2014 Леонід Петрович Бедратюк, Ганна Іванівна Бедратюк
This work is licensed under a Creative Commons Attribution 4.0 International License.
The consolidation and conditions for the transfer of copyright (identification of authorship) is carried out in the License Agreement. In particular, the authors reserve the right to the authorship of their manuscript and transfer the first publication of this work to the journal under the terms of the Creative Commons CC BY license. At the same time, they have the right to conclude on their own additional agreements concerning the non-exclusive distribution of the work in the form in which it was published by this journal, but provided that the link to the first publication of the article in this journal is preserved.
A license agreement is a document in which the author warrants that he/she owns all copyright for the work (manuscript, article, etc.).
The authors, signing the License Agreement with TECHNOLOGY CENTER PC, have all rights to the further use of their work, provided that they link to our edition in which the work was published.
According to the terms of the License Agreement, the Publisher TECHNOLOGY CENTER PC does not take away your copyrights and receives permission from the authors to use and dissemination of the publication through the world's scientific resources (own electronic resources, scientometric databases, repositories, libraries, etc.).
In the absence of a signed License Agreement or in the absence of this agreement of identifiers allowing to identify the identity of the author, the editors have no right to work with the manuscript.
It is important to remember that there is another type of agreement between authors and publishers – when copyright is transferred from the authors to the publisher. In this case, the authors lose ownership of their work and may not use it in any way.