Adaptive methods for modelling of temperature field of laser irradiated plate

Authors

  • Святослав Алексеевич Лукьяненко National Technical University of Ukraine "Kyiv Polytechnic Institute" 6, Polytechnichna st., Kyiv, 03056, Ukraine
  • Ирина Юрьевна Михайлова National Technical University of Ukraine "Kyiv Polytechnic Institute" 6, Polytechnichna st., Kyiv, 03056, Ukraine

DOI:

https://doi.org/10.15587/1729-4061.2013.19099

Keywords:

method for coordinate-splitting, adaptive method of grid construction, balance method

Abstract

The result of computer modeling of the temperature field of the plate arising under the influence of a moving laser beam is considered in the paper. The comparison of the calculation results, obtained due to the application of implicit schemes of the balance method on the non-uniform adaptive grid with the experimental results was made. At the application of both schemes, two methods of interpolation of the function values - the method of Lagrange of the third degree and the Kochanek-Bartels splines were used in the construction of a new grid. The systems of algebraic equations arising in this difference scheme are solved by the modified Gaussian method in the case of linear circuit and Newton's method in the case of nonlinear circuit. The adaptive method, which "condenses" the nodes in areas with large gradient of temperatures and arranges them more sparsely in areas where the temperature varies smoothly, is used for the automatic construction of a variable of the difference grid. This allows to reduce the calculation time and to get a result with a predetermined accuracy.

The results of computer modeling showed that the nonlinear implicit scheme of the balance method, using the Kochanek-Bartels splines gives a more accurate result. We will also note that the nonlinear scheme of the balance method is a bit more time-consuming as compared to the linear as it requires the implementation of iterations of Newton's method.

Author Biographies

Святослав Алексеевич Лукьяненко, National Technical University of Ukraine "Kyiv Polytechnic Institute" 6, Polytechnichna st., Kyiv, 03056

Professor, Head of APPSD sub-Department

Automation of Power Processes and Systems Design sub-Department

Ирина Юрьевна Михайлова, National Technical University of Ukraine "Kyiv Polytechnic Institute" 6, Polytechnichna st., Kyiv, 03056

Post-graduate student

Automation of Power Processes and Systems Design sub-Department

References

  1. Price, S. Laser forming [Текст] / S. Price // Journal of Manufacturing Science and Engineering. – 2007. – Vol. 129. – P. 117-124.
  2. Shi, Y. Temperature gradient mechanism in laser forming of thin plates [Текст] / Y. Shi, H. Shen, Z. Yao, J. Hu // Optics & Laser Technology. – 2007. – Vol. 39(4). – P. 858-863.
  3. Головко, Л. Ф. Моделювання температурного поля при зміцненні матеріалів лазерним випромінюванням [Текст] / Л. Ф. Головко, С. О. Лук’яненко, Д. С. Смаковський, І. Ю. Михайлова, В. А. Агеєнко // Моделювання та інформаційні технології: Збірник наукових праць Інституту проблем моделювання в енергетиці НАНУ- К.: ИПМЭ НАНУ - 2008. – С. 28-35.
  4. Михайлова, І. Моделювання температурного поля з урахуванням залежності фізичних характеристик від температури [Текст] / І. Михайлова // Технологічний аудит та резерви виробництва. – 2013. – T. 5, N 4(13). - С. 12-15.
  5. Калиткин, Н. Н. Численные методы [Текст] / Н. Н. Калиткин – М.: Наука - 1978. – 512 с.
  6. Кутателадзе, С. С. Основы теории теплообмена [Текст] / С. С. Кутателадзе – М.:Атомиздат - 1979. – 416 с.
  7. Марчук, Г. И. Методы расщепления [Текст] / Г. И. Марчук – М.: Наука. Гл. ред. физ.-мат. лит. - 1988. – 264 с.
  8. Тихонов, А. Н. Уравнения математической физики [Текст] / А. Н. Тихонов, А. А. Самарский — 5-е изд. — M.: Наука - 1977. — 735 с.
  9. Лук’яненко, С. О. Адаптивні обчислювальні методи моделювання об’єктів з розподіленими параметрами [Текст] / С. О. Лук’яненко — К.: ІВЦ «Видавництво «Політехніка»» - 2004. — 236 с.
  10. Kochanek, D. H. U. Interpolating splines with local tension, continuity and bias control [Текст] / D. H. U. Kochanek, R. H. Bartels // ACM SIGGRAPH. – 1984. – Vol. 18. – No. 3. – P. 33-41.
  11. 65Г – сталь конструкционная рессорно-пружинная – Марочник стали и сплавов [Электронный ресурс]. – Режим доступа: www/ URL:http://www.splav.kharkov.com/mat_start.php?name_id=265/ 07.11.2013 г. – Загл. с экрана.
  12. Price, S. (2007). Laser forming. Journal of Manufacturing Science and Engineering, 129, 117-124.
  13. Shi, Y., Shen, H., Yao, Z., Hu, J. (2007). Temperature gradient mechanism in laser forming of thin plates. Optics & Laser Technology, 39 (4), 858-863.
  14. Golovko, L.F., Lukyanenko, S.O., Mykhailova, I.Yu., Tretyak, V.A. (2011). Modeling of the process of contactless laser deformation using adaptive method. Electronic modeling, 3, 71-84.
  15. Mykhailova, I. (2013). Temperature field modeling with dependence of physical characteristics on temperature. Technology audit and production reserves, 5/4(13), 12-15.
  16. Kalitkin, N. N. (1978). Computational methods. Moscow. USSR: Nauka.
  17. Kutateladze, C. C. (1979). Basics of heat transference theory. Atomizdat.
  18. Marchuk, G. I. (1988). Splitting methods. Moscow. USSR: Nauka.
  19. Tihonov, A. N., Samarskii, A. A. (1977). Mathematical physics equations. Moscow. USSR: Nauka.
  20. Lukyanenko, S.O. (2004). Adaptive computational methods of modeling objects with distributed parameters. Kiev. Ukraine: Politehnika.
  21. Kochanek, D. H. U., Bartels, R. H. (1984). Interpolating splines with local tension, continuity and bias control. ACM SIGGRAPH, 18 (3), 33-41.
  22. http://www.splav.kharkov.com/mat_start.php?name_id=265

Published

2013-12-17

How to Cite

Лукьяненко, С. А., & Михайлова, И. Ю. (2013). Adaptive methods for modelling of temperature field of laser irradiated plate. Eastern-European Journal of Enterprise Technologies, 6(5(66), 12–16. https://doi.org/10.15587/1729-4061.2013.19099

Issue

Section

Applied physics