Optimization control multidimensional prosess of single crystal growth

Authors

  • Виктор Семенович Суздаль Institute for Scintillation Materials, NAS of Ukraine Lenina 60, Kharkov, 61001,
  • Юрий Михайлович Епифанов Institute for Scintillation Materials, NAS of Ukraine Lenina 60, Kharkov, 61001, Ukraine
  • Игорь Игоревич Тавровский Institute for Scintillation Materials, NAS of Ukraine Lenina 60, Kharkov, 61001, Ukraine

DOI:

https://doi.org/10.15587/1729-4061.2013.19124

Keywords:

single-crystal, growth, management, optimization, system, model, decomposition, quality, stability

Abstract

The use of opportunities of systems of non-adaptive control, in particular, modal for high-quality management of linear dynamic objects is considered, and some results of our research in this field are given in the paper. The main objective of the research is to solve the problem of synthesis of stabilization law for a multidimensional control object based on the use of knowledge in the field of management, obtained from various sources, for the technological process of single-crystal growing by the Chokhralsky method on “GROWTH” setups. Current methods and means of ensuring the specified requirements to the management process imply distribution of matrix eigenvalues or transfer matrixes of a closed-loop system in the given points and areas, optimization of transients in the closed-loop system.

The methods for stabilization of a condition of multidimensional object using the system, providing the implementation of the specified requirements to the management process on the basis of decomposition of the model of the growth process as a control object, are considered in the paper. The proposed method with the use of graphic representation of the sensitivity function for the analysis allows to obtain important information on high-quality management of the system for the obtained matrix components of this system.

The algorithm of choosing the most appropriate matrix components for the model of the particular control object is presented. We propose to use this method for the increase in the accuracy of maintaining thermal conditions of the crystal growth, both in the stationary environment, and at the maximum perturbations of modes, with the purpose of improving the efficiency of management systems by modern growth setups in conditions of producing these single-crystals.

The research results can be applied by specialists in the field of robust modal management of material, energetic and informational flows in the systems of management of modern technological processes, introduced into the technical environment of these technological processes

Author Biographies

Виктор Семенович Суздаль, Institute for Scintillation Materials, NAS of Ukraine Lenina 60, Kharkov, 61001

Laboratory of control systems

Юрий Михайлович Епифанов, Institute for Scintillation Materials, NAS of Ukraine Lenina 60, Kharkov, 61001

Laboratory of control systems

Игорь Игоревич Тавровский, Institute for Scintillation Materials, NAS of Ukraine Lenina 60, Kharkov, 61001

Laboratory of control systems

References

  1. Рост кристаллов [Текст]: монография / В. И. Горилецкий, Б. В. Гринев, Б. Г. Заславский и др. ― Х. : АКТА, 2002. ― 535 с.
  2. Kalman, R. E. Contributions to the theory of optimal control [Текст] / R. E. Kalman // Bulletin de la Sociedad Matematica Mexicana. ―1960. ― № 5. ― P. 102―119.
  3. Wonham, W. M. On pole-assignment in multi-input controllable systems [Текст] / Wonham W. M. // IEEE Trans. Automat. Control. ―1967. ― V. 12, № 6. ― P. 660―667.
  4. Skelton, R. E. An unified algebraic approach to linear control design [Текст] / R. E. Skelton, T. Iwasaki, K. Grigoriadis. ― London : Taylor&Francis Ltd., 1998.
  5. Chilali, M. H∞ design with pole placement constraints: an LMI approach [Текст] / M. Chilali, P. Gahinet // IEEE Trans. Automat. Control. ―1996. ― V. 41, № 3. ― P. 358―367.
  6. Scherer, C. Multiobjective output-feedback control via LMI optimization [Текст] / C. Scherer, P. Gahinet, M. Chilali // IEEE Trans. Automat. Control. ―1997. ― V. 42. ― P. 896―911.
  7. Mcfarlane, D. C. Loop Shaping Design Procedure Using Synthesis [Текст] / D. C. Mcfarlane, K. Glover // IEEE Trans. Automat. Control. ―1992. ― V. 37, № 6. ― P. 759―769.
  8. Kailath, T. Linear systems. Englewood cliffs [Текст] / T. Kailath. ― NJ : Prentice Hall, 1980.
  9. Iracleous, D. P. A simple solution to the optimal eigenvalue assignment problem [Текст] / D. P. Iracleous, F. T. Alexandridis // IEEE Trans. Automat. Control. ― 1999. ― V. 44, № 9. ― P. 1746―1749.
  10. Зубов, Н. Е. Оптимизация законов управления орбитальной стабилизации космического аппарата [Текст] / Н. Е. Зубов, Е. А. Микрин, С. С. Негодяев, В. Н. Рябченко, А. В. Лапин // ТРУДЫ МФТИ. ― 2012. ― Т. 4, № 2. ― С. 164―176.
  11. Суздаль, В. С. Параметрическая идентификация VARMAX моделей процесса кристаллизации крупногабаритных монокристаллов [Текст] / В. С. Суздаль, Ю. М. Епифанов, А. В. Соболев, И. И. Тавровский // Нові технології : Науковий вісник Кременчуцького університету економіки, інформаційних технологій і управління. ― 2009. ― № 4 (26). ― С. 23―29.
  12. Goriletsky, V., Grinev, B., Zaslavsky, B. (2002). Rost kristallov, 535.
  13. Kalman, R. (1960). Contributions to the theory of optimal control. Bulletin de la Sociedad Matematica Mexicana, 5, 102–119.
  14. Wonham, W. (1967). On pole-assignment in multi-input controllable systems. IEEE Trans. Automat. Control, 12, 660–667.
  15. Skelton, R., Iwasaki, T., & Grigoriadis, K. (1998). An unified algebraic approach to linear control design.
  16. Chilali, M., Gahinet, P. (1996). design with pole placement constraints: an LMI approach. IEEE Trans. Automat. Control, 41, 358–367.
  17. Scherer, C., Gahinet, P., & Chilali M. (1997). Multiobjective output-feedback control via LMI optimization. IEEE Trans. Automat. Control, 42, 896–911.
  18. Mcfarlane, D., Glover, K. (1992). Loop shaping design procedure using synthesis. IEEE Trans. on Automat. Control, 37, 759–769.
  19. Kailath, T. (1980). Linear systems. Englewood cliffs.
  20. Iracleous, D., Alexandridis, F. (1999). A simple solution to the optimal eigenvalue assignment problem. IEEE Trans. Automat. Control, 44, 1746–1749.
  21. Zubov, N., Mikrin, E., Negodyaev, S., Ryabchenko, V., Lapin, A. (2012). Optimizatsiya zakonov upravleniya orbitalnoy stabilizatsii kosmicheskogo apparata, 4, 164–176.
  22. Suzdal, V., Yepifanov, Y., Sobolev, A., Tawrovsky, I. (2009). Parametricheskaya identifikatsiya VARMAX modeley protsessa kristallizatsiyi krupnogabaritnykh monokristallov. Novi tekhnologiyi : Kremenchug, 4 (26), 23–29.

Published

2013-12-13

How to Cite

Суздаль, В. С., Епифанов, Ю. М., & Тавровский, И. И. (2013). Optimization control multidimensional prosess of single crystal growth. Eastern-European Journal of Enterprise Technologies, 6(2(66), 41–45. https://doi.org/10.15587/1729-4061.2013.19124