A study of self-organization of scientific communications: from statistical patterns to law

Authors

DOI:

https://doi.org/10.15587/1729-4061.2020.194474

Keywords:

librarianship, statistical laws, large-scale invariance, stable distribution

Abstract

The article considers statistical laws of scientific communications and describes the phenomena and processes of self-organization in library science, science of science, and linguistics. Synergetics is chosen as the methodological basis of research.

The aim of the study is to develop a synergistic concept of the emergence of statistical laws of information processes and phenomena in scientific communications for their generalization and presentation in the form of a single law.

The concept of synergetics is developed for scientific communications as a manifestation of objectively existing but theoretically unsubstantiated quantitative relations between the subjects and objects of these communications (scientists, publications, and terms). The necessity of using stable distribution laws of probability theory for describing scale-invariant phenomena and processes is noted. In the mathematical sense, the stability of the distribution law is the property of preserving its type for any sum of random variables having this distribution. The mathematical abstraction of a ‘random variable’ in scientific communications takes on a clear concreteness. For Bradford’s regularity, the random variable is the number of articles on a particular topic in the journal; for Lotka’s regularity, it is the number of scholar’s publications; and for Zipf’s regularity, it is the frequency of using the word in the text.

The study has determined the characteristic indicator of the stable law of the distribution of processes and phenomena in scientific communications, which is equal to the constant of the golden section.

A synergistic concept of scientific communications is formulated as follows: scale-invariant processes and phenomena of self-organization are a manifestation of a stable distribution law of probability theory with a characteristic indicator equal to the constant of the golden ratio

Author Biographies

Leonid Kostenko, Vernadsky National Library of Ukraine Holosiivskyi ave., 3, Kyiv, Ukraine, 03039

PhD, Senior Researcher

Department of Bibliometrics and Scientometrics

Tetiana Symonenko, Vernadsky National Library of Ukraine Holosiivskyi ave., 3, Kyiv, Ukraine, 03039

PhD

Department of Bibliometrics and Scientometrics

References

  1. Lotka, A. (1926). The frequency distribution of scientific productivity. Journal of the Washington Academy of Sciences, 16 (12), 317–323.
  2. Zipf, G. (1949). Human Behavior and the Principle of Least Effort. Cambridge, Massachusetts: Addison-Wesley, 573.
  3. Bradford, S. (1934). Sources of Information on Specific Subjects. Engineering: An Illustrated Weekly Journal (London), 85–86.
  4. Batcha, S., Sivaraman, P. (2018). Testing of Lotka's law and its suitability to research productivity of Annamalai University, a higher education institution, South India. Library Philosophy and Practice, 2197.
  5. Sivasamy, K., Vivekanandha, S. (2018). Applicability of Lotka’s Law to Pollution Control Research Publications During 2013-2017 Using Scopus Database. Research Review International Journal of Multidisciplinary, 3 (11), 154–161.
  6. Mandel'brot, B. (1973). Teoriya informatsii i psiholingvisticheskaya teoriya chastot slov. Matematicheskie metody v sotsial'nyh naukah. Moscow: Progress, 316–337.
  7. Ausloos, M. (2014). Zipf–Mandelbrot–Pareto model for co-authorship popularity. Scientometrics, 101 (3), 1565–1586. doi: https://doi.org/10.1007/s11192-014-1302-y
  8. Alvarado, R. U. (2016). Growth of Literature on Bradford's Law. Investigación Bibliotecológica: Archivonomía, Bibliotecología e Información, 30 (68), 51–72. doi: https://doi.org/10.1016/j.ibbai.2016.06.003
  9. Campanario, J. M. (2015). Providing impact: The distribution of JCR journals according to references they contribute to the 2-year and 5-year journal impact factors. Journal of Informetrics, 9 (2), 398–407. doi: https://doi.org/10.1016/j.joi.2015.01.005
  10. Hugar, J. G., Bachlapur, M. M., Anandhalli, G. (2019). Research contribution of bibliometric studies as reflected in web of science from 2013 to 2017. Library Philosophy and Practice, 2319.
  11. Bigdeli, Z., Gazni, A. (2012). Authors’ sources of information: a new dimension in information scattering. Scientometrics, 92 (3), 505–521. doi: https://doi.org/10.1007/s11192-011-0609-1
  12. Arsenova, I. (2013). New Application of Bibliometrics. Procedia - Social and Behavioral Sciences, 73, 678–682. doi: https://doi.org/10.1016/j.sbspro.2013.02.105
  13. Lin, S.-C. (2011). Application of Bradford's law and Lotka's law to web metrics study on the Wiki website. Journal of Educational Media & Library Sciences, 48 (3), 325–346.
  14. Gor'kova, V. I. (1988). Informetriya (kolichestvennye metody v nauchno-tehnicheskoy informatsii). Itogi nauki i tehniki. Ser. Informatika. Vol. 10. Moscow: VINITI, 328.
  15. Shreyder, Yu. A. (1996). Rangovye raspredeleniya kak sistemnoe svoystvo. Matematicheskoe opisanie tsenozov i zakonomernosti tehniki. Filosofiya i stanovlenie tehniki. Tsenologicheskie issledovaniya, 1-2, 33–42.
  16. Schaer, P. (2013). Applied informetrics for digital libraries: An overview of foundations, problems and current approaches. Historical Social Research, 38 (3), 267–281.
  17. Bol'shakova, E. I., Klyshinskiy, E. S., Lande, D. V. et. al. (2011). Avtomaticheskaya obrabotka tekstov na estestvennom yazyke i komp'yuternaya lingvistika. Moscow: MIEM, 272.
  18. Maz-Machado, А., Madrid, M.-J., Jimenez-Fanjul, N., Leon-Mantero, C. (2017). Empirical Examination of Lotka’s Law for Information Science and Library Science. Pakistan Journal of Information Management & Libraries, 19, 37–51.
  19. Vickery, B. C. (1948). Bradford's Law of Scattering. Journal of Documentation, 4 (3), 198–203. doi: https://doi.org/10.1108/eb026133
  20. Egghe, L., Rousseau, R. (2019). Measures of linear type lead to a characterization of Zipf functions. Scientometrics, 121 (3), 1707–1715. doi: https://doi.org/10.1007/s11192-019-03257-y
  21. Rousseau, R., Zhang, X. (2019). Reflections on Tools and Methods for Differentiated Assessments of Individual Scientists, Groups of Scientists and Scientific Journals. Journal of Data and Information Science, 4 (3), 1–5. doi: https://doi.org/10.2478/jdis-2019-0011
  22. Leimkuhler, F. F. (1967). The Bradford Distribution. Journal of Documentation, 23 (3), 197–207. doi: https://doi.org/10.1108/eb026430
  23. Bibliometryka ukrainskoi nauky. Available at: http://www.nbuviap.gov.ua/bpnu/
  24. Bookstein, A. (1990). Informetric distributions, part I: Unified overview. Journal of the American Society for Information Science, 41 (5), 368–375. doi: https://doi.org/10.1002/(sici)1097-4571(199007)41:5<368::aid-asi8>3.0.co;2-c
  25. Bookstein, A. (1990). Informetric distributions, part II: Resilience to ambiguity. Journal of the American Society for Information Science, 41 (5), 376–386. doi: https://doi.org/10.1002/(sici)1097-4571(199007)41:5<376::aid-asi9>3.0.co;2-e
  26. Kostenko, L. (2017). Zakonomirnosti sotsialnykh komunikatsiy. Visnyk Knyzhkovoi palaty, 11, 12–15.
  27. Simonenko, T. V. (2017). Bibliometriya v razvitii kommunikatsiy mezhdunarodnoy assotsiatsii akademiy nauk. Biblioteki natsional'nyh akademiy nauk: problemy funktsionirovaniya, tendentsii razvitiya, 14, 27–33.
  28. Haken, G. (1980). Sinergetika. Moscow: Mir, 406.
  29. Budanov, V. G. (2009). Metodologiya sinergetiki v postneklassicheskoy nauke i v obrazovanii. Moscow: Knizhniy dom «LIBROKOM», 240.
  30. Prohorov, A. M. et. al. (Ed.) (1992). Fizicheskaya entsiklopediya. Vol. 3. Magnitoplazmenniy – Poyntinga teorema. Moscow, 672.
  31. Lande, D. V., Furashev, V. N., Braychevskiy, S. M., Grigor'ev, A. N. (2006). Osnovy modelirovaniya i otsenki elektronnyh informatsionnyh potokov. Kyiv: Inzhiniring, 176.
  32. Korolyuk, V. S., Portenko, N. I., Skorohod, V. A., Turbin, A. F. (1985). Spravochnik po teorii veroyatnostey i matematicheskoy statistike. Moscow: Nauka, 640.
  33. Lomakin, D. V., Pankratova, A. Z., Surkova, A. S. (2011). Zolotaya proportsiya kak invariant struktury teksta. Vestnik Nizhegorodskogo universiteta im. N. I. Lobachevskogo, 4 (1), 196–199.

Downloads

Published

2020-02-29

How to Cite

Kostenko, L., & Symonenko, T. (2020). A study of self-organization of scientific communications: from statistical patterns to law. Eastern-European Journal of Enterprise Technologies, 1(2 (103), 24–29. https://doi.org/10.15587/1729-4061.2020.194474