Investigation of characteristics of binary Ni–Co oxy­hydroxides for supercapacitor application

Authors

DOI:

https://doi.org/10.15587/1729-4061.2020.194618

Keywords:

binary Ni-Co oxyhydroxide, nickel cobaltate, high-temperature two-stage synthesis, specific capacity, supercapacitor

Abstract

Binary Ni-Co compounds, namely oxyhydroxides and cobaltates of nickel, are promising active compounds for supercapacitors. The characteristics of binary Ni-Co oxyhydroxides synthesized using the method of high-temperature two-stage synthesis with hot and cold hydrolysis were studied. The crystal structure of the samples was studied by means of X-ray diffraction and thermogravimetry, particle morphology –scanning electron microscopy, electrochemical characteristics – cyclic voltammetry and galvanostatic charge-discharge cycling.

By means of scanning electron microscopy, it was found that the samples of cold and hot hydrolysis are nano-structured powders composed of flower-like particles, composed of 70–90 nm thick plates. The results of XRD and thermogravimetric analyses revealed that both samples are binary Ni-Co oxyhydroxides (hydrated nickel cobaltates with different hydration levels) with the presence of pure nickel cobaltate. Hot hydrolysis samples contain less water and more nickel cobaltate. Cyclic voltammetry and galvanostatic charge-discharge cycling revealed that in the cold hydrolysis Ni-Co sample, only the nickel component is electrochemically active. The maximum capacity of the cold hydrolysis sample is 185.7 F/g (at 10 mA/cm2). With the increase of current density to 120 mA/cm2, the specific capacity drops by 4.47 times. The hot hydrolysis sample was found to have both nickel and cobalt components active: the sample having increased capacity with increasing current density from 10 mA/cm2 to 120 mA/cm2 by 1.25 times, up to 192.5 F/g. The hot hydrolysis sample was found to possess high reversibility and high effectiveness of the electrochemical component from cycle 1

Author Biographies

Vadym Kovalenko, Ukrainian State University of Chemical Technology Gagarina ave., 8, Dnipro, Ukraine, 49005 Vyatka State University Moskovskaya str., 36, Kirov, Russian Federation, 610000

PhD, Associate Professor

Department of Analytical Chemistry and Food Additives and Cosmetics

Senior Researcher

Competence center "Ecological technologies and systems"

Valerii Kotok, Ukrainian State University of Chemical Technology Gagarina ave., 8, Dnipro, Ukraine, 49005 Vyatka State University Moskovskaya str., 36, Kirov, Russian Federation, 610000

PhD, Associate Professor

Department of Processes, Apparatus and General Chemical Technology

Senior Researcher

Competence center "Ecological technologies and systems"

Alexey Sykchin, Ukrainian State University of Chemical Technology Gagarina ave., 8, Dnipro, Ukraine, 49005 Vyatka State University Moskovskaya str., 36, Kirov, Russian Federation, 610000

Junior Reseacher

Department of Analytical Chemistry and Food Additives and Cosmetics

Assistant

Department of Technologies of Inorganic Substances and Electrochemical Manufacturing

Ihor Kovalenko, Ukrainian State University of Chemical Technology Gagarina ave., 8, Dnipro, Ukraine, 49005

Doctor of Technical Sciences, Professor

Department of Inorganic Chemistry

Oksana Berzenina, Ukrainian State University of Chemical Technology Gagarina ave., 8, Dnipro, Ukraine, 49005

PhD, Associate Professor

Department of Inorganic Chemistry

Viktoriia Stoliarenko, Kryvyi Rih State Pedagogical University Gagarina ave., 54, Kryvyi Rih, Ukraine, 50086

PhD, Associate Professor

Department Chemistry and Methods of its Teaching

Iryna Plaksiienko, Poltava State Agrarian Academy Skovorody str., 1/3, Poltava, Ukraine, 36003

PhD, Associate Professor

Department of Ecology, Balanced Еnvironmental Management and Environmental Protection

Pavlo Pysarenko, Poltava State Agrarian Academy Skovorody str., 1/3, Poltava, Ukraine, 36003

Doctor of Agricultural Sciences, Professor, First Vice-Rector

Department of Ecology, Balanced Еnvironmental Management and Environmental Protection

Marina Samojlik, Poltava State Agrarian Academy Skovorody str., 1/3, Poltava, Ukraine, 36003

Doctor of Economic Sciences, Professor, Head of Department

Department of Ecology, Balanced Еnvironmental Management and Environmental Protection

References

  1. Hall, D. S., Lockwood, D. J., Bock, C., MacDougall, B. R. (2015). Nickel hydroxides and related materials: a review of their structures, synthesis and properties. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 471 (2174), 20140792. doi: https://doi.org/10.1098/rspa.2014.0792
  2. Vidotti, M., Torresi, R., Torresi, S. I. C. de. (2010). Nickel hydroxide modified electrodes: a review study concerning its structural and electrochemical properties aiming the application in electrocatalysis, electrochromism and secondary batteries. Química Nova, 33 (10), 2176–2186. doi: https://doi.org/10.1590/s0100-40422010001000030
  3. Chen, J. (1999). Nickel Hydroxide as an Active Material for the Positive Electrode in Rechargeable Alkaline Batteries. Journal of The Electrochemical Society, 146 (10), 3606. doi: https://doi.org/10.1149/1.1392522
  4. Chen, H., Wang, J. M., Pan, T., Zhao, Y. L., Zhang, J. Q., Cao, C. N. (2005). The structure and electrochemical performance of spherical Al-substituted α-Ni(OH)2 for alkaline rechargeable batteries. Journal of Power Sources, 143 (1-2), 243–255. doi: https://doi.org/10.1016/j.jpowsour.2004.11.041
  5. Kamath, P. V., Dixit, M., Indira, L., Shukla, A. K. et. al. (1994). Stabilized α-Ni(OH)2 as electrode material for alkaline secondary cells. Journal of the Electrochemical Society, 141 (11), 2956–2959. doi: https://doi.org/10.1149/1.2059264
  6. Sun, Y.-K., Lee, D.-J., Lee, Y. J., Chen, Z., Myung, S.-T. (2013). Cobalt-Free Nickel Rich Layered Oxide Cathodes for Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 5 (21), 11434–11440. doi: https://doi.org/10.1021/am403684z
  7. Kovalenko, V., Kotok, V. (2018). Influence of ultrasound and template on the properties of nickel hydroxide as an active substance of supercapacitors. Eastern-European Journal of Enterprise Technologies, 3 (12 (93)), 32–39. doi: https://doi.org/10.15587/1729-4061.2018.133548
  8. Kovalenko, V., Kotok, V. (2017). Study of the influence of the template concentration under homogeneous precepitation on the properties of Ni(OH)2 for supercapacitors. Eastern-European Journal of Enterprise Technologies, 4 (6 (88)), 17–22. doi: https://doi.org/10.15587/1729-4061.2017.106813
  9. Zheng, C., Liu, X., Chen, Z., Wu, Z., Fang, D. (2014). Excellent supercapacitive performance of a reduced graphene oxide/Ni(OH)2 composite synthesized by a facile hydrothermal route. Journal of Central South University, 21 (7), 2596–2603. doi: https://doi.org/10.1007/s11771-014-2218-7
  10. Kotok, V., Kovalenko, V. (2017). The properties investigation of the faradaic supercapacitor electrode formed on foamed nickel substrate with polyvinyl alcohol using. Eastern-European Journal of Enterprise Technologies, 4 (12 (88)), 31–37. doi: https://doi.org/10.15587/1729-4061.2017.108839
  11. Kotok, V. A., Kovalenko, V. L., Kovalenko, P. V., Solovov, V. A., Deabate, S., Mehdi, A. et. al. (2017). Advanced electrochromic Ni(OH)2/PVA films formed by electrochemical template synthesis. ARPN Journal of Engineering and Applied Sciences, 12 (13), 3962–3977.
  12. Kotok, V., Kovalenko, V. (2017). The electrochemical cathodic template synthesis of nickel hydroxide thin films for electrochromic devices: role of temperature. Eastern-European Journal of Enterprise Technologies, 2 (11 (86)), 28–34. doi: https://doi.org/10.15587/1729-4061.2017.97371
  13. Wang, Y., Zhang, D., Peng, W., Liu, L., Li, M. (2011). Electrocatalytic oxidation of methanol at Ni–Al layered double hydroxide film modified electrode in alkaline medium. Electrochimica Acta, 56 (16), 5754–5758. doi: https://doi.org/10.1016/j.electacta.2011.04.049
  14. Fan, Y., Yang, Z., Cao, X., Liu, P., Chen, S., Cao, Z. (2014). Hierarchical Macro-Mesoporous Ni(OH)2for Nonenzymatic Electrochemical Sensing of Glucose. Journal of The Electrochemical Society, 161 (10), B201–B206. doi: https://doi.org/10.1149/2.0251410jes
  15. Ramesh, T. N., Kamath, P. V. (2006). Synthesis of nickel hydroxide: Effect of precipitation conditions on phase selectivity and structural disorder. Journal of Power Sources, 156 (2), 655–661. doi: https://doi.org/10.1016/j.jpowsour.2005.05.050
  16. Rajamathi, M., Vishnu Kamath, P., Seshadri, R. (2000). Polymorphism in nickel hydroxide: role of interstratification. Journal of Materials Chemistry, 10 (2), 503–506. doi: https://doi.org/10.1039/a905651c
  17. Kovalenko, V., Kotok, V. (2018). Comparative investigation of electrochemically synthesized (α+β) layered nickel hydroxide with mixture of α-Ni(OH)2 and β-Ni(OH)2. Eastern-European Journal of Enterprise Technologies, 2 (6 (92)), 16–22. doi: https://doi.org/10.15587/1729-4061.2018.125886
  18. Kovalenko, V., Kotok, V. (2017). Definition of effectiveness of β-Ni(OH)2 application in the alkaline secondary cells and hybrid supercapacitors. Eastern-European Journal of Enterprise Technologies, 5 (6 (89)), 17–22. doi: https://doi.org/10.15587/1729-4061.2017.110390
  19. Li, J., Luo, F., Tian, X., Lei, Y., Yuan, H., Xiao, D. (2013). A facile approach to synthesis coral-like nanoporous β-Ni(OH) 2 and its supercapacitor application. Journal of Power Sources, 243, 721–727. doi: https://doi.org/10.1016/j.jpowsour.2013.05.172
  20. Kovalenko, V. L., Kotok, V. A., Sykchin, A. A., Mudryi, I. A., Ananchenko, B. A., Burkov, A. A. et. al. (2016). Nickel hydroxide obtained by high-temperature two-step synthesis as an effective material for supercapacitor applications. Journal of Solid State Electrochemistry, 21 (3), 683–691. doi: https://doi.org/10.1007/s10008-016-3405-2
  21. Jayashree, R. S., Vishnu Kamath, P. (2001). Suppression of the α→β-nickel hydroxide transformation in concentrated alkali: role of dissolved cations. Journal of Applied Electrochemistry, 31 (12), 1315–1320. doi: https://doi.org/10.1023/a:1013876006707
  22. Hu, M., Yang, Z., Lei, L., Sun, Y. (2011). Structural transformation and its effects on the electrochemical performances of a layered double hydroxide. Journal of Power Sources, 196 (3), 1569–1577. doi: https://doi.org/10.1016/j.jpowsour.2010.08.041
  23. Córdoba de Torresi, S. I., Provazi, K., Malta, M., Torresi, R. M. (2001). Effect of Additives in the Stabilization of the α Phase of Ni(OH)2 Electrodes. Journal of The Electrochemical Society, 148 (10), A1179. doi: https://doi.org/10.1149/1.1403731
  24. Nalawade, P., Aware, B., Kadam, V. J., Hirlekar, R. S. (2009). Layered double hydroxides: A review. Journal of Scientific & Industrial Research, 68 (4), 267–272.
  25. Liu, B., Wang, X. Y., Yuan, H. T., Zhang, Y. S. et. al. (1999). Physical and electrochemical characteristics of aluminium-substituted nickel hydroxide. Journal of Applied Electrochemistry, 29, 853–858. doi: https://doi.org/10.1023/A:1003537900947
  26. Kotok, V., Kovalenko, V., Vlasov, S. (2018). Investigation of Ni­Al hydroxide with silver addition as an active substance of alkaline batteries. Eastern-European Journal of Enterprise Technologies, 3 (6 (93)), 6–11. doi: https://doi.org/10.15587/1729-4061.2018.133465
  27. Kovalenko, V., Kotok, V. (2017). Obtaining of Ni–Al layered double hydroxide by slit diaphragm electrolyzer. Eastern-European Journal of Enterprise Technologies, 2 (6 (86)), 11–17. doi: https://doi.org/10.15587/1729-4061.2017.95699
  28. Lei, L., Hu, M., Gao, X., Sun, Y. (2008). The effect of the interlayer anions on the electrochemical performance of layered double hydroxide electrode materials. Electrochimica Acta, 54 (2), 671–676. doi: https://doi.org/10.1016/j.electacta.2008.07.004
  29. Kotok, V., Kovalenko, V., Malyshev, V. (2017). Comparison of oxygen evolution parameters on different types of nickel hydroxide. Eastern-European Journal of Enterprise Technologies, 5 (12 (89)), 12–19. doi: https://doi.org/10.15587/1729-4061.2017.109770
  30. Kovalenko, V., Kotok, V. (2019). Investigation of characteristics of double Ni–Co and ternary Ni–Co–Al layered hydroxides for supercapacitor application. Eastern-European Journal of Enterprise Technologies, 2 (6 (98)), 58–66. doi: https://doi.org/10.15587/1729-4061.2019.164792
  31. Hu, C.-C., Hsu, C.-T., Chang, K.-H., Hsu, H.-Y. (2013). Microwave-assisted hydrothermal annealing of binary Ni–Co oxy-hydroxides for asymmetric supercapacitors. Journal of Power Sources, 238, 180–189. doi: https://doi.org/10.1016/j.jpowsour.2013.03.019
  32. Dubal, D. P., Gomez-Romero, P., Sankapal, B. R., Holze, R. (2015). Nickel cobaltite as an emerging material for supercapacitors: An overview. Nano Energy, 11, 377–399. doi: https://doi.org/10.1016/j.nanoen.2014.11.013
  33. Hsu, C.-T., Hu, C.-C. (2013). Synthesis and characterization of mesoporous spinel NiCo2O4 using surfactant-assembled dispersion for asymmetric supercapacitors. Journal of Power Sources, 242, 662–671. doi: https://doi.org/10.1016/j.jpowsour.2013.05.130
  34. Vlamidis, Y., Scavetta, E., Giorgetti, M., Sangiorgi, N., Tonelli, D. (2017). Electrochemically synthesized cobalt redox active layered double hydroxides for supercapacitors development. Applied Clay Science, 143, 151–158. doi: https://doi.org/10.1016/j.clay.2017.03.031
  35. Wang, T., Xu, W., Wang, H. (2017). Ternary NiCoFe Layered Double Hydroxide Nanosheets Synthesized by Cation Exchange Reaction for Oxygen Evolution Reaction. Electrochimica Acta, 257, 118–127. doi: https://doi.org/10.1016/j.electacta.2017.10.074
  36. Martins, P. R., Ferreira, L. M. C., Araki, K., Angnes, L. (2014). Influence of cobalt content on nanostructured alpha-phase-nickel hydroxide modified electrodes for electrocatalytic oxidation of isoniazid. Sensors and Actuators B: Chemical, 192, 601–606. doi: https://doi.org/10.1016/j.snb.2013.11.029
  37. Lamiel, C., Nguyen, V. H., Hussain, I., Shim, J.-J. (2017). Enhancement of electrochemical performance of nickel cobalt layered double hydroxide@nickel foam with potassium ferricyanide auxiliary electrolyte. Energy, 140, 901–911. doi: https://doi.org/10.1016/j.energy.2017.09.035
  38. Moazzen, E., Timofeeva, E. V., Segre, C. U. (2017). Role of crystal lattice templating and galvanic coupling in enhanced reversible capacity of Ni(OH)2/Co(OH)2 core/shell battery cathode. Electrochimica Acta, 258, 684–693. doi: https://doi.org/10.1016/j.electacta.2017.11.114
  39. Delmas, C., Braconnier, J. J., Borthomieu, Y., Hagenmuller, P. (1987). New families of cobalt substituted nickel oxyhydroxides and hydroxides obtained by soft chemistry. Materials Research Bulletin, 22 (6), 741–751. doi: https://doi.org/10.1016/0025-5408(87)90027-4
  40. Martins, P. R., Araújo Parussulo, A. L., Toma, S. H., Rocha, M. A., Toma, H. E., Araki, K. (2012). Highly stabilized alpha-NiCo(OH)2 nanomaterials for high performance device application. Journal of Power Sources, 218, 1–4. doi: https://doi.org/10.1016/j.jpowsour.2012.06.065
  41. Chen, J.-C., Hsu, C.-T., Hu, C.-C. (2014). Superior capacitive performances of binary nickel–cobalt hydroxide nanonetwork prepared by cathodic deposition. Journal of Power Sources, 253, 205–213. doi: https://doi.org/10.1016/j.jpowsour.2013.12.073
  42. Schneiderová, B., Demel, J., Zhigunov, A., Bohuslav, J., Tarábková, H., Janda, P., Lang, K. (2017). Nickel-cobalt hydroxide nanosheets: Synthesis, morphology and electrochemical properties. Journal of Colloid and Interface Science, 499, 138–144. doi: https://doi.org/10.1016/j.jcis.2017.03.096
  43. Nethravathi, C., Ravishankar, N., Shivakumara, C., Rajamathi, M. (2007). Nanocomposites of α-hydroxides of nickel and cobalt by delamination and co-stacking: Enhanced stability of α-motifs in alkaline medium and electrochemical behaviour. Journal of Power Sources, 172 (2), 970–974. doi: https://doi.org/10.1016/j.jpowsour.2007.01.098
  44. Lokhande, P. E., Panda, H. S. (2015). Synthesis and Characterization of Ni.Co(OH)2 Material for Supercapacitor Application. International Advanced Research Journal in Science, Engineering and Technology, 2 (8), 10–13. doi: https://doi.org/10.17148/iarjset.2015.2903
  45. Padmanathan, N., Selladurai, S. (2013). Solvothermal synthesis of mesoporous NiCo2O4 spinel oxide nanostructure for high-performance electrochemical capacitor electrode. Ionics, 19 (11), 1535–1544. doi: https://doi.org/10.1007/s11581-013-0907-0
  46. Zou, R., Xu, K., Wang, T., He, G., Liu, Q., Liu, X. et. al. (2013). Chain-like NiCo2O4 nanowires with different exposed reactive planes for high-performance supercapacitors. Journal of Materials Chemistry A, 1 (30), 8560. doi: https://doi.org/10.1039/c3ta11361b
  47. Wang, Q., Liu, B., Wang, X., Ran, S., Wang, L., Chen, D., Shen, G. (2012). Morphology evolution of urchin-like NiCo2O4 nanostructures and their applications as psuedocapacitors and photoelectrochemical cells. Journal of Materials Chemistry, 22 (40), 21647. doi: https://doi.org/10.1039/c2jm34705a
  48. Kuang, M., Zhang, W., Guo, X. L., Yu, L., Zhang, Y. X. (2014). Template-free and large-scale synthesis of hierarchical dandelion-like NiCo2O4 microspheres for high-performance supercapacitors. Ceramics International, 40 (7), 10005–10011. doi: https://doi.org/10.1016/j.ceramint.2014.02.099
  49. Yuan, C., Li, J., Hou, L., Lin, J., Zhang, X., Xiong, S. (2013). Polymer-assisted synthesis of a 3D hierarchical porous network-like spinel NiCo2O4 framework towards high-performance electrochemical capacitors. Journal of Materials Chemistry A, 1 (37), 11145. doi: https://doi.org/10.1039/c3ta11949a
  50. Burmistr, M. V., Boiko, V. S., Lipko, E. O., Gerasimenko, K. O., Gomza, Y. P., Vesnin, R. L. et. al. (2014). Antifriction and Construction Materials Based on Modified Phenol-Formaldehyde Resins Reinforced with Mineral and Synthetic Fibrous Fillers. Mechanics of Composite Materials, 50 (2), 213–222. doi: https://doi.org/10.1007/s11029-014-9408-0
  51. Vlasova, E., Кovalenko, V., Kotok, V., Vlasov, S. (2016). Research of the mechanism of formation and properties of tripolyphosphate coating on the steel basis. Eastern-European Journal of Enterprise Technologies, 5 (5 (83)), 33–39. doi: https://doi.org/10.15587/1729-4061.2016.79559
  52. Kovalenko, V., Kotok, V. (2017). Selective anodic treatment of W(WC)-based superalloy scrap. Eastern-European Journal of Enterprise Technologies, 1 (5 (85)), 53–58. doi: https://doi.org/10.15587/1729-4061.2017.91205
  53. Kotok, V., Kovalenko, V. (2018). A study of multilayered electrochromic platings based on nickel and cobalt hydroxides. Eastern-European Journal of Enterprise Technologies, 1 (12 (91)), 29–35. doi: https://doi.org/10.15587/1729-4061.2018.121679
  54. Kovalenko, V., Kotok, V. (2018). “The popcorn effect”: obtaining of the highly active ultrafine nickel hydroxide by microwave treatment of wet precipitate. Eastern-European Journal of Enterprise Technologies, 5 (6 (95)), 12–20. doi: https://doi.org/10.15587/1729-4061.2018.143126
  55. Kotok, V., Kovalenko, V. (2017). Optimization of nickel hydroxide electrode of the hybrid supercapacitor. Eastern-European Journal of Enterprise Technologies, 1 (6 (85)), 4–9. doi: https://doi.org/10.15587/1729-4061.2017.90810
  56. Kovalenko, V., Kotok, V., Kovalenko, I. (2018). Activation of the nickel foam as a current collector for application in supercapacitors. Eastern-European Journal of Enterprise Technologies, 3 (12 (93)), 56–62. doi: https://doi.org/10.15587/1729-4061.2018.133472
  57. Wu, Y. Q., Chen, X. Y., Ji, P. T., Zhou, Q. Q. (2011). Sol–gel approach for controllable synthesis and electrochemical properties of NiCo2O4 crystals as electrode materials for application in supercapacitors. Electrochimica Acta, 56 (22), 7517–7522. doi: https://doi.org/10.1016/j.electacta.2011.06.101
  58. Yuan, C., Li, J., Hou, L., Lin, J., Pang, G., Zhang, L. et. al. (2013). Template-engaged synthesis of uniform mesoporous hollow NiCo2O4 sub-microspheres towards high-performance electrochemical capacitors. RSC Advances, 3 (40), 18573. doi: https://doi.org/10.1039/c3ra42828a
  59. Wei, T.-Y., Chen, C.-H., Chien, H.-C., Lu, S.-Y., Hu, C.-C. (2010). A Cost-Effective Supercapacitor Material of Ultrahigh Specific Capacitances: Spinel Nickel Cobaltite Aerogels from an Epoxide-Driven Sol-Gel Process. Advanced Materials, 22 (3), 347–351. doi: https://doi.org/10.1002/adma.200902175
  60. Hsu, H.-Y., Chang, K.-H., Salunkhe, R. R., Hsu, C.-T., Hu, C.-C. (2013). Synthesis and characterization of mesoporous Ni–Co oxy-hydroxides for pseudocapacitor application. Electrochimica Acta, 94, 104–112. doi: https://doi.org/10.1016/j.electacta.2013.01.125

Downloads

Published

2020-02-29

How to Cite

Kovalenko, V., Kotok, V., Sykchin, A., Kovalenko, I., Berzenina, O., Stoliarenko, V., Plaksiienko, I., Pysarenko, P., & Samojlik, M. (2020). Investigation of characteristics of binary Ni–Co oxy­hydroxides for supercapacitor application. Eastern-European Journal of Enterprise Technologies, 1(12 (103), 15–23. https://doi.org/10.15587/1729-4061.2020.194618

Issue

Section

Materials Science